UDF小白入门

UDF小白入门

在PySpark中,使用UDF涉及有三个步骤:
前置:先创建一个spark dataframe

python 复制代码
from pyspark.sql import SparkSession
from pyspark.sql.functions import *

spark = SparkSession.builder \
   .master("spark://localhost:7077") \
   .appName("pyspark sql demo") \
   .getOrCreate()

# 创建学生成绩DataFrame
studentDF = spark.createDataFrame(
    [
      ("张三", 85),
      ("李四", 90),
      ("王老五", 55)
    ],["name","score"]
)

studentDF.printSchema()
studentDF.show()

(1) 第一步是用Python语法创建一个函数并进行测试。

创建一个函数(普通的Python函数)将成绩转换到考察等级

python 复制代码
def convertGrade(score):
    if score > 100:
        return "作弊"
    elif score >= 90:
        return "优秀"
    elif score >= 80:
        return "良好"
    elif score >= 70:
        return "中等"
    else:
        return "不及格"

(2) 第二步是通过将函数名传递给PySpark SQL的udf()函数来注册它。

python 复制代码
#注册为一个UDF(在DataFrame API中使用时的注册方法)
convertGradeUDF = udf(convertGrade,StringType())

# 或者通过装饰器注册
@udf(StringType())
def convertGrade(score):
    if score > 100:
        return "作弊"
    elif score >= 90:
        return "优秀"
    elif score >= 80:
        return "良好"
    elif score >= 70:
        return "中等"
    else:
        return "不及格"

(3) 第三步是在DataFrame代码或发出SQL查询时使用UDF。在SQL查询中使用UDF时,注册过程略有不同。

python 复制代码
# 使用该UDF将成绩转换为字母等级
studentDF \
  .withColumn("grade",convertGradeUDF(col("score"))) \
  .show()
'''
相关推荐
Elaine336几秒前
【验证码识别算法性能对比实验系统——KNN、SVM、CNN 与多模态大模型的性能博弈与机理分析】
python·opencv·支持向量机·cnn·多模态·数字图像处理
SCBAiotAigc1 分钟前
langchain1.x学习笔记(三):langchain之init_chat_model的新用法
人工智能·python·langchain·langgraph·deepagents
Blossom.1182 分钟前
联邦迁移学习实战:在数据孤岛中构建个性化推荐模型
开发语言·人工智能·python·深度学习·神经网络·机器学习·迁移学习
Blossom.1185 分钟前
大模型自动化压缩:基于权重共享的超网神经架构搜索实战
运维·人工智能·python·算法·chatgpt·架构·自动化
天天睡大觉14 分钟前
Python学习7
windows·python·学习
冰暮流星19 分钟前
javascript短路运算
开发语言·前端·javascript
唐叔在学习21 分钟前
Pywebview进阶:基于Python直接操作前端元素
后端·python
白柚Y30 分钟前
react的hooks
前端·javascript·react.js
夫唯不争,故无尤也30 分钟前
智能旅行助手agent:从零构建AI旅游推荐
人工智能·python·大模型开发
Cigaretter731 分钟前
Day 42 简单CNN
python·深度学习·cnn