UDF小白入门

UDF小白入门

在PySpark中,使用UDF涉及有三个步骤:
前置:先创建一个spark dataframe

python 复制代码
from pyspark.sql import SparkSession
from pyspark.sql.functions import *

spark = SparkSession.builder \
   .master("spark://localhost:7077") \
   .appName("pyspark sql demo") \
   .getOrCreate()

# 创建学生成绩DataFrame
studentDF = spark.createDataFrame(
    [
      ("张三", 85),
      ("李四", 90),
      ("王老五", 55)
    ],["name","score"]
)

studentDF.printSchema()
studentDF.show()

(1) 第一步是用Python语法创建一个函数并进行测试。

创建一个函数(普通的Python函数)将成绩转换到考察等级

python 复制代码
def convertGrade(score):
    if score > 100:
        return "作弊"
    elif score >= 90:
        return "优秀"
    elif score >= 80:
        return "良好"
    elif score >= 70:
        return "中等"
    else:
        return "不及格"

(2) 第二步是通过将函数名传递给PySpark SQL的udf()函数来注册它。

python 复制代码
#注册为一个UDF(在DataFrame API中使用时的注册方法)
convertGradeUDF = udf(convertGrade,StringType())

# 或者通过装饰器注册
@udf(StringType())
def convertGrade(score):
    if score > 100:
        return "作弊"
    elif score >= 90:
        return "优秀"
    elif score >= 80:
        return "良好"
    elif score >= 70:
        return "中等"
    else:
        return "不及格"

(3) 第三步是在DataFrame代码或发出SQL查询时使用UDF。在SQL查询中使用UDF时,注册过程略有不同。

python 复制代码
# 使用该UDF将成绩转换为字母等级
studentDF \
  .withColumn("grade",convertGradeUDF(col("score"))) \
  .show()
'''
相关推荐
不知更鸟5 小时前
Django 项目设置流程
后端·python·django
自动化代码美学6 小时前
【Python3.13】官网学习之控制流
开发语言·windows·python·学习
星离~8 小时前
Vue响应式原理详解:从零实现一个迷你Vue
前端·javascript·vue.js
百锦再8 小时前
第18章 高级特征
android·java·开发语言·后端·python·rust·django
一只小阿乐8 小时前
react 中的判断显示
前端·javascript·vue.js·react.js·react
小沐°8 小时前
React-页码组件
前端·javascript·react.js
源码之家8 小时前
基于Python房价预测系统 数据分析 Flask框架 爬虫 随机森林回归预测模型、链家二手房 可视化大屏 大数据毕业设计(附源码)✅
大数据·爬虫·python·随机森林·数据分析·spark·flask
SalvoGao8 小时前
Python学习 | 怎么理解epoch?
数据结构·人工智能·python·深度学习·学习
楚疏笃9 小时前
纯Python 实现 Word 文档转换 Markdown
python·word