UDF小白入门

UDF小白入门

在PySpark中,使用UDF涉及有三个步骤:
前置:先创建一个spark dataframe

python 复制代码
from pyspark.sql import SparkSession
from pyspark.sql.functions import *

spark = SparkSession.builder \
   .master("spark://localhost:7077") \
   .appName("pyspark sql demo") \
   .getOrCreate()

# 创建学生成绩DataFrame
studentDF = spark.createDataFrame(
    [
      ("张三", 85),
      ("李四", 90),
      ("王老五", 55)
    ],["name","score"]
)

studentDF.printSchema()
studentDF.show()

(1) 第一步是用Python语法创建一个函数并进行测试。

创建一个函数(普通的Python函数)将成绩转换到考察等级

python 复制代码
def convertGrade(score):
    if score > 100:
        return "作弊"
    elif score >= 90:
        return "优秀"
    elif score >= 80:
        return "良好"
    elif score >= 70:
        return "中等"
    else:
        return "不及格"

(2) 第二步是通过将函数名传递给PySpark SQL的udf()函数来注册它。

python 复制代码
#注册为一个UDF(在DataFrame API中使用时的注册方法)
convertGradeUDF = udf(convertGrade,StringType())

# 或者通过装饰器注册
@udf(StringType())
def convertGrade(score):
    if score > 100:
        return "作弊"
    elif score >= 90:
        return "优秀"
    elif score >= 80:
        return "良好"
    elif score >= 70:
        return "中等"
    else:
        return "不及格"

(3) 第三步是在DataFrame代码或发出SQL查询时使用UDF。在SQL查询中使用UDF时,注册过程略有不同。

python 复制代码
# 使用该UDF将成绩转换为字母等级
studentDF \
  .withColumn("grade",convertGradeUDF(col("score"))) \
  .show()
'''
相关推荐
fantasy_arch41 分钟前
pytorch例子计算两张图相似度
人工智能·pytorch·python
WBluuue3 小时前
数学建模:智能优化算法
python·机器学习·数学建模·爬山算法·启发式算法·聚类·模拟退火算法
烛阴3 小时前
精简之道:TypeScript 参数属性 (Parameter Properties) 详解
前端·javascript·typescript
赴3353 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩3 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp
RPA+AI十二工作室3 小时前
亚马逊店铺绩效巡检_影刀RPA源码解读
chrome·python·rpa·影刀
小艳加油4 小时前
Python机器学习与深度学习;Transformer模型/注意力机制/目标检测/语义分割/图神经网络/强化学习/生成式模型/自监督学习/物理信息神经网络等
python·深度学习·机器学习·transformer
开发者小天4 小时前
为什么 /deep/ 现在不推荐使用?
前端·javascript·node.js
学行库小秘6 小时前
ANN神经网络回归预测模型
人工智能·python·深度学习·神经网络·算法·机器学习·回归
Yn3126 小时前
在 Python 中使用 json 模块的完整指南
开发语言·python·json