标定系列------OpenCV中的CV_8UC1、CV_16UC1、CV_32FC1等对应的整数值及计算方法(二十五)
1.代码段
以下取自OpenCV文档
xml
#define CV_BIG_INT(n)
#define CV_BIG_UINT(n)
#define CV_CN_MAX 512
#define CV_CN_SHIFT 3
#define CV_DEPTH_MAX (1 << CV_CN_SHIFT)
#define CV_8U 0
#define CV_8S 1
#define CV_16U 2
#define CV_16S 3
#define CV_32S 4
#define CV_32F 5
#define CV_64F 6
#define CV_USRTYPE1 7
#define CV_MAT_DEPTH_MASK (CV_DEPTH_MAX - 1)
#define CV_MAT_DEPTH(flags) ((flags) & CV_MAT_DEPTH_MASK)
#define CV_MAKETYPE(depth, cn) (CV_MAT_DEPTH(depth) + (((cn)-1) << CV_CN_SHIFT))
#define CV_MAKE_TYPE CV_MAKETYPE
#define CV_8UC1 CV_MAKETYPE(CV_8U,1)
#define CV_8UC2 CV_MAKETYPE(CV_8U,2)
#define CV_8UC3 CV_MAKETYPE(CV_8U,3)
#define CV_8UC4 CV_MAKETYPE(CV_8U,4)
#define CV_8UC(n) CV_MAKETYPE(CV_8U,(n))
#define CV_8SC1 CV_MAKETYPE(CV_8S,1)
#define CV_8SC2 CV_MAKETYPE(CV_8S,2)
#define CV_8SC3 CV_MAKETYPE(CV_8S,3)
#define CV_8SC4 CV_MAKETYPE(CV_8S,4)
#define CV_8SC(n) CV_MAKETYPE(CV_8S,(n))
#define CV_16UC1 CV_MAKETYPE(CV_16U,1)
#define CV_16UC2 CV_MAKETYPE(CV_16U,2)
#define CV_16UC3 CV_MAKETYPE(CV_16U,3)
#define CV_16UC4 CV_MAKETYPE(CV_16U,4)
#define CV_16UC(n) CV_MAKETYPE(CV_16U,(n))
#define CV_16SC1 CV_MAKETYPE(CV_16S,1)
#define CV_16SC2 CV_MAKETYPE(CV_16S,2)
#define CV_16SC3 CV_MAKETYPE(CV_16S,3)
#define CV_16SC4 CV_MAKETYPE(CV_16S,4)
#define CV_16SC(n) CV_MAKETYPE(CV_16S,(n))
#define CV_32SC1 CV_MAKETYPE(CV_32S,1)
#define CV_32SC2 CV_MAKETYPE(CV_32S,2)
#define CV_32SC3 CV_MAKETYPE(CV_32S,3)
#define CV_32SC4 CV_MAKETYPE(CV_32S,4)
#define CV_32SC(n) CV_MAKETYPE(CV_32S,(n))
#define CV_32FC1 CV_MAKETYPE(CV_32F,1)
#define CV_32FC2 CV_MAKETYPE(CV_32F,2)
#define CV_32FC3 CV_MAKETYPE(CV_32F,3)
#define CV_32FC4 CV_MAKETYPE(CV_32F,4)
#define CV_32FC(n) CV_MAKETYPE(CV_32F,(n))
#define CV_64FC1 CV_MAKETYPE(CV_64F,1)
#define CV_64FC2 CV_MAKETYPE(CV_64F,2)
#define CV_64FC3 CV_MAKETYPE(CV_64F,3)
#define CV_64FC4 CV_MAKETYPE(CV_64F,4)
#define CV_64FC(n) CV_MAKETYPE(CV_64F,(n))
2.计算方法举例
根据提供的宏定义,CV_8UC1 是通过 CV_MAKETYPE 宏定义的一个数据类型标识符,它结合了数据深度 CV_8U 和通道数 1。
1)首先,需要知道 CV_8U 和 CV_CN_SHIFT 的值。
根据代码:
CV_8U 表示8位无符号整数,对应的整数值是 0。
CV_CN_SHIFT 表示通道数的位移量,其值是 3。
2)CV_MAT_DEPTH_MASK 是用来获取数据深度的掩码,它定义为 (1 << CV_CN_SHIFT) - 1。
根据 CV_CN_SHIFT 的值,CV_MAT_DEPTH_MASK 计算如下:
1 << CV_CN_SHIFT = 1 << 3 = 8
(1 << CV_CN_SHIFT) - 1 = 8 - 1 = 7
所以,CV_MAT_DEPTH_MASK 的值是 7。
3)使用 CV_MAKETYPE 宏来计算 CV_8UC1 的整数值:
CV_MAKETYPE(CV_8U, 1) = (CV_MAT_DEPTH(CV_8U) + ((1 - 1) << CV_CN_SHIFT))
由于 CV_8U 对应的整数值是 0,并且 1 - 1 等于 0,
所以:
CV_MAKETYPE(0, 0) = (0 + (0 << 3))
左移操作 0 << 3 的结果仍然是 0,因为任何数左移0位都保持不变。
所以:
CV_MAKETYPE(0, 0) = 0 + 0 = 0
因此,CV_8UC1 对应的整数值是 0。这意味着它表示一个8位单通道图像,其中单通道(灰度图像)的数据类型是无符号整数。
说明:
根据提供的代码,CV_MAKETYPE(depth, cn) 宏的定义如下:
#define CV_MAKETYPE(depth, cn) (CV_MAT_DEPTH(depth) + (((cn)-1) << CV_CN_SHIFT))
其中,CV_MAT_DEPTH(depth) 是一个提取数据类型深度的宏,而 ((cn)-1) << CV_CN_SHIFT) 计算的是通道数部分的值。
根据之前的讨论,我们知道:
CV_CN_SHIFT 是通道数在数据类型标识符中左移的位数。
CV_MAT_DEPTH(depth) 是数据类型深度的掩码,它是 CV_DEPTH_MAX - 1,而 CV_DEPTH_MAX 是 (1 << CV_CN_SHIFT)。
假设 CV_CN_SHIFT 的值为 3,那么 CV_MAT_DEPTH_MASK 将会是 1 << CV_CN_SHIFT - 1,即 7。这意味着数据类型深度占据了标识符的低3位,而通道数占据了接下来的几位。
现在,再让我们计算一些具体的例子:
CV_8UC1:8位无符号整数,单通道。
深度:CV_8U 对应的整数值(假设为 0)。
通道数:1 - 1 左移 CV_CN_SHIFT 位,即 0 左移 3 位,结果还是 0。
结果:0 + 0 = 0
CV_8UC2:8位无符号整数,双通道。
深度:CV_8U 对应的整数值(假设为 0)。
通道数:(2 - 1) << 3 = 1 << 3 = 8。
结果:0 + 8 = 8
CV_8UC3:8位无符号整数,三通道。
深度:CV_8U 对应的整数值(假设为 0)。
通道数:(3 - 1) << 3 = 2 << 3 = 16。
结果:0 + 16 = 16
以此类推,对于 CV_8UC(n),其整数值计算为:
结果:CV_8U 的值 + (n - 1) << CV_CN_SHIFT
3.直接给出其余对应结果
对于无符号16位整数类型(CV_16U):
CV_16UC1 = CV_16U + ((1-1) << CV_CN_SHIFT) = 2 + (0 << 3) = 2
CV_16UC2 = CV_16U + ((2-1) << CV_CN_SHIFT) = 2 + (1 << 3) = 2 + 8 = 10
CV_16UC3 = CV_16U + ((3-1) << CV_CN_SHIFT) = 2 + (2 << 3) = 2 + 16 = 18
CV_16UC4 = CV_16U + ((4-1) << CV_CN_SHIFT) = 2 + (3 << 3) = 2 + 24 = 26
CV_16UC(n) 是一个通用宏,对于任意 n,其计算方式为 2 + ((n-1) << 3)
对于有符号16位整数类型(CV_16S):
CV_16SC1 = CV_16S + ((1-1) << CV_CN_SHIFT) = 3 + (0 << 3) = 3
CV_16SC2 = CV_16S + ((2-1) << CV_CN_SHIFT) = 3 + (1 << 3) = 3 + 8 = 11
CV_16SC3 = CV_16S + ((3-1) << CV_CN_SHIFT) = 3 + (2 << 3) = 3 + 16 = 19
CV_16SC4 = CV_16S + ((4-1) << CV_CN_SHIFT) = 3 + (3 << 3) = 3 + 24 = 27
CV_16SC(n) 对于任意 n,其计算方式为 3 + ((n-1) << 3)
对于32位有符号整数类型(CV_32S):
CV_32SC1 = CV_32S + ((1-1) << CV_CN_SHIFT) = 4 + (0 << 3) = 4
CV_32SC2 = CV_32S + ((2-1) << CV_CN_SHIFT) = 4 + (1 << 3) = 4 + 8 = 12
CV_32SC3 = CV_32S + ((3-1) << CV_CN_SHIFT) = 4 + (2 << 3) = 4 + 16 = 20
CV_32SC4 = CV_32S + ((4-1) << CV_CN_SHIFT) = 4 + (3 << 3) = 4 + 24 = 28
CV_32SC(n) 对于任意 n,其计算方式为 4 + ((n-1) << 3)
对于32位浮点数类型(CV_32F):
CV_32FC1 = CV_32F + ((1-1) << CV_CN_SHIFT) = 5 + (0 << 3) = 5
CV_32FC2 = CV_32F + ((2-1) << CV_CN_SHIFT) = 5 + (1 << 3) = 5 + 8 = 13
CV_32FC3 = CV_32F + ((3-1) << CV_CN_SHIFT) = 5 + (2 << 3) = 5 + 16 = 21
CV_32FC4 = CV_32F + ((4-1) << CV_CN_SHIFT) = 5 + (3 << 3) = 5 + 24 = 29
CV_32FC(n) 对于任意 n,其计算方式为 5 + ((n-1) << 3)
对于64位浮点数类型(CV_64F):
CV_64FC1 = CV_64F + ((1-1) << CV_CN_SHIFT) = 6 + (0 << 3) = 6
CV_64FC2 = CV_64F + ((2-1) << CV_CN_SHIFT) = 6 + (1 << 3) = 6 + 8 = 14
CV_64FC3 = CV_64F + ((3-1) << CV_CN_SHIFT) = 6 + (2 << 3) = 6 + 16 = 22
CV_64FC4 = CV_64F + ((4-1) << CV_CN_SHIFT) = 6 + (3 << 3) = 6 + 24 = 30
CV_64FC(n) 对于任意 n,其计算方式为 6 + ((n-1) << 3)