SLICEM是如何将查找表配置为分布式RAM/移位寄存器的

1.首先说SliceM和SliceL如何配置为ROM的

一个SLICE包含4个六输入查找表,因此每个查找表就能存储64bit的数据,要实现128bit的ROM,只需要通过两个LUT就可实现,具体如下表:

2.如何配置成为分布式RAM

SLICEM中的LUT如下图:

DI为输入的数据,WCLK为同步时钟,WE为使能信号,A[5:0]为地址总线、WA为写数据总线,LUT的输出Output是异步读取结果,输出端可选是否使用寄存器实现同步读。

(1)128×1的单口RAM

(2)128×1的双口RAM

(3)256×1的单口RAM

(4)32×2的四端口RAM

除了上述的方式,还可以将其当作两个5输入LUT ,例如下图将其配置成32*2的四端口,这时候可以发现一个LUT其实只有32位深度,正式因为采用了5输入LUT的方式(1个6输入LUT中的两个5输入LUT分别配置成宽度位1bit、深度为32的RAM,公用一组地址线、写使能,写数据输入分别为DI1和DI2)。

3.如何配成成为移位寄存器

SILCEM相比SLICEL之所以能够配置成移位寄存器,是因为其LUT具有写数据端(DI1 DI2),写地址线(WA1-WA8),写使能端(WE),而SLICEL的LUT6没有。这样就可以将外部的数据输入进来,实现32位移位寄存器。

时序图如下:

如果要实现64/96/128移位寄存器,可以通过级联的方式实现。

但是如果希望设计的移位寄存器并不是32位或者32位的倍数呢?

任何32位都可以通过改变地址异步读出(在O6 LUT输出,在原语中称为Q),此功能在创建较小的移位寄存器(小于32位)时非常有用。例如,当构建一个13位移位寄存器时,将读地址设置为第13位对应的地址即5'b1101,这时候输出可以选择Output(Q)或者Registered Output,可以实现同步获取移位寄存器输出。(LUT的读是异步的)

4.与LUT相关的原语

(1)多路复用器

|-------|------------------|---------------|---------|
| 原语 | 输入 | 资源 | 功能 |
| MUXF7 | 两个LUT的输出 | F7AMUX/F7BMUX | 8选1选择器 |
| MUXF8 | F7AMUX/F7BMUX的输出 | F8MUX | 16选1选择器 |

两种多路复用器的端口相同,如下:

  • 数据输入端:I0,I1
  • 控制信号:S
  • 数据输出:O

问题:为何无论是8选1还是16选一,其输入都只有两个数?这样不是二选一吗?

实际上要明白这个需要联系上文中如何实现这些功能的。在上文的介绍中,MUXF7的输入是两个LUT的输出结果,这时相当于是二选一,而LUT又是一个4选1的选择器,因此实现了8选1的功能。

MUXF8实现16选1是在MUXF7的基础上,再对相邻的MUXF7/MUXF8的输出再进行选择,实现16选1的输出。

使用原语的例子如下:

MUXF7 MUXF7_inst (
.O(O), // Output of MUX to general routing
.I0(I0), // Input (tie to LUT6 O6 pin)
.I1(I1), // Input (tie to LUT6 O6 pin)
.S(S) // Input select to MUX
);


MUXF8 MUXF8_inst (
.O(O), // Output of MUX to general routing
.I0(I0), // Input (tie to MUXF7 L/LO out)
.I1(I1), // Input (tie to MUXF7 L/LO out)
.S(S) // Input select to MUX
);

(2)分布式RAM

  • D:数据输入端
  • WE:写使能
  • WCLK:写时钟
  • A[#:0]:地址
  • O:移位输出

以32×1的单端口RAM为例:

  RAM32X1S_1 #(
      .INIT(32'h00000000)  // Initial contents of RAM
   )RAM32X1S_1_inst (
      .O(O),       // RAM output
      .A0(A0),     // RAM address[0] input
      .A1(A1),     // RAM address[1] input
      .A2(A2),     // RAM address[2] input
      .A3(A3),     // RAM address[3] input
      .A4(A4),     // RAM address[4] input
      .D(D),       // RAM data input
      .WCLK(WCLK), // Write clock input
      .WE(WE)      // Write enable input
   );

更多原语可按照下面这边文章里的步骤找到如何例化:

Xinlinx原语在哪查看如何使用/原语示例-CSDN博客

(3)移位寄存器

   SRLC32E #(
      .INIT(32'h00000000) // Initial Value of Shift Register
   ) SRLC32E_inst (
      .Q(Q),     // SRL data output
      .Q31(Q31), // SRL cascade output pin
      .A(A),     // 5-bit shift depth select input
      .CE(CE),   // Clock enable input
      .CLK(CLK), // Clock input
      .D(D)      // SRL data input
   );

Xinlinx官方CLB文档如下:

7 Series FPGAs Configurable Logic Block User Guide (UG474) • 查看器 • AMD 技术信息门户

相关推荐
li星野2 小时前
ZYNQ:点亮LED灯
fpga开发·zynq·7010
9527华安2 小时前
FPGA实现PCIE视频采集转HDMI输出,基于XDMA中断架构,提供3套工程源码和技术支持
fpga开发·音视频·pcie·xdma·ov5640·hdmi
乌恩大侠3 小时前
【Xcode Command Line Tools】安装指南
macos·fpga开发·c
apple_ttt4 小时前
从零开始讲PCIe(9)——PCIe总线体系结构
fpga开发·fpga·pcie
Little Tian7 小时前
信号用wire类型还是reg类型定义
fpga开发
apple_ttt1 天前
从零开始讲PCIe(6)——PCI-X概述
fpga开发·fpga·pcie
水饺编程1 天前
【英特尔IA-32架构软件开发者开发手册第3卷:系统编程指南】2001年版翻译,1-2
linux·嵌入式硬件·fpga开发
apple_ttt1 天前
从零开始讲PCIe(5)——66MHZ的PCI总线与其限制
fpga开发·fpga·pcie
最好有梦想~1 天前
FPGA时序分析和约束学习笔记(2、FPGA时序传输模型)
fpga开发
IM_DALLA1 天前
【Verilog学习日常】—牛客网刷题—Verilog企业真题—VL76
学习·fpga开发