线性代数 --- 矩阵的对角化以及矩阵的n次幂

矩阵的对角化以及矩阵的n次幂

(特征向量与特征值的应用)

前言:

在上一篇文章中,我记录了学习矩阵的特征向量和特征值的学习笔记,所关注的是那些矩阵A作用于向量x后,方向不发生改变的x(仅有尺度的缩放)。
线性代数 --- 特征值与特征向量(上)-CSDN博客文章浏览阅读1.1k次,点赞9次,收藏21次。文章介绍了特征向量与特征值的基本概念,并给出了详细的说明图示和例子。至于如何求解矩阵的特征向量与特征值,我在下一篇文章中给出了说明。https://blog.csdn.net/daduzimama/article/details/136455766

此外,我也在另一篇文章中提到了一般矩阵的特征值与特征向量的求法。 线性代数 --- 特征值与特征向量(下)-CSDN博客文章浏览阅读1.3k次,点赞31次,收藏19次。本文介绍了求解一般矩阵的特征向量和特征值的具体方法。https://blog.csdn.net/daduzimama/article/details/136608493


正文:

Part I 矩阵的对角化

这里,我打算通过这篇文章整理/梳理一下矩阵对角化的学习笔记。既然已经知道了如何求出矩阵的特征向量和特征值现,那么找到这些东西有什么用呢?答案就是矩阵的对角化。

(截图来自于参考文献2)

假设一个n维方阵A经过计算后得到n个线性无关的特征向量x1,x2...,xn,对应n个λ1,λ2...,λn。我们有:

现在,我们把这些特征向量都放到一个矩阵中,合成一个新的矩阵X。看看矩阵A乘以矩阵X后会怎么样。首先,我们按照如下方式构建一个新矩阵X,我们称之为特征向量矩阵(Eigen-vector matrix) 。因为该矩阵的每一列都是一个特征向量,所以用大写的X表示:

令A乘以X,根据矩阵的乘法原则,矩阵A与矩阵X的乘法可以看成是把矩阵X各列看成权重的线性组合的结果(这句话不好懂,可以看看下面的图示)

得到:

注意,之前用特征向量构造的新矩阵X,又再一次出现了。与此同时,他的旁边出现了一个新矩阵,这是一个对角矩阵,主对角线上的元素全是特征值λ。这也是一个新矩阵,称之为特征值矩阵(Eigen-value matrix) 。因其主对角线上的元素都是特征值,所以用大写的(即,大写的λ)表示:

最终得到:

The Key Equation

又因为,我之前所构建的特征向量矩阵X是由n个线性无关的特征向量组成的,列与列之间线性无关。因此,矩阵X是可逆的。现在我们把等式两边同时左乘一个X的逆矩阵,即完成了矩阵A的对角化:

(对角化公式)

反过来,如果把等式两边同时右乘X的逆矩阵,就得到了矩阵A的又一种分解公式(之前学过的分解有基于高斯消元的LU分解,基于gram-schmidt正交化的QR分解):

(矩阵A的分解公式)

注意,这一切操作都基于一个前提:矩阵A有n个线性无关的特征向量

什么样的矩阵可以对角化?

当n维方阵A有n个不同的特征值时,矩阵A才能用上述方式对角化。因为,如果A有n个不同的特征值,那么一定对应有n个相互独立的特征向量。但反过来就不一定成立,比如说单位矩阵有n个不同的特征向量,但他的特征值都是1。

(截图来自于我用Jupyter notebook所生成的代码)

最后我们给出一个矩阵对角化的例子作为这部分的小结,假设方阵矩阵A为:

首先,用jupyter note book求出特征向量和特征值:

为了方便,我把后面那个特征向量改成[1,1](我这里不是乱改的,如果自己动手算也能得到这个结果)。如此一来我们得到的两个特征值和他们各自对应的特征向量为:

相应的在这里我们就能写出特征值矩阵

齐次,用特征向量构建特征向量矩阵X:

求特征向量矩阵X的逆:

代入矩阵的对角化公式 完成对角化,看乘法的结果是否正好等于特征向量矩阵

这里要注意,矩阵的乘法在python里面的操作符是"@",也就是上图中我用红框框出来的。如果写错了,计算结果就不对了,我在上图中也演示的错误的结果。

同样的,代入矩阵A的分解公式验证等式两边是否相等:


(全文完)

--- 作者,松下J27

参考文献(鸣谢):

1,Lec22_对角化和矩阵乘幂_哔哩哔哩_bilibili

2,《Introduction to Linear algebra》Fifth Edition --- Gilbert strang,page 304

(配图与本文无关)

**版权声明:**所有的笔记,可能来自很多不同的网站和说明,在此没法一一列出,如有侵权,请告知,立即删除。欢迎大家转载,但是,如果有人引用或者COPY我的文章,必须在你的文章中注明你所使用的图片或者文字来自于我的文章,否则,侵权必究。 ----松下J27

相关推荐
点云SLAM18 小时前
Eigen中Dense 模块简要介绍和实战应用示例(最小二乘拟合直线、协方差矩阵计算和稀疏求解等)
线性代数·算法·机器学习·矩阵·机器人/slam·密集矩阵与向量·eigen库
酌沧2 天前
大模型的底层运算线性代数
线性代数
老歌老听老掉牙3 天前
SymPy 矩阵到 NumPy 数组的全面转换指南
python·线性代数·矩阵·numpy·sympy
星期天要睡觉3 天前
机器学习——CountVectorizer将文本集合转换为 基于词频的特征矩阵
人工智能·机器学习·矩阵
洋曼巴-young3 天前
240. 搜索二维矩阵 II
数据结构·算法·矩阵
何妨重温wdys3 天前
矩阵链相乘的最少乘法次数(动态规划解法)
c++·算法·矩阵·动态规划
Keying,,,,4 天前
力扣hot100 | 矩阵 | 73. 矩阵置零、54. 螺旋矩阵、48. 旋转图像、240. 搜索二维矩阵 II
python·算法·leetcode·矩阵
易木木木响叮当5 天前
有限元方法中的数值技术:行列式、求逆、矩阵方程
线性代数·矩阵
东方佑6 天前
UniVoc:基于二维矩阵映射的多语言词汇表系统
人工智能·算法·矩阵
火车叨位去19496 天前
力扣top100(day01-05)--矩阵
算法·leetcode·矩阵