多标签与多分类的区别

多标签与多分类的区别

多标签 多分类
样本类别个数 一个或多个 只有一个
输出 一个标签维度的向量,每一维度是类别的概率[0.1, 0.6, 0.1, 0.1, 0.8] 输出属于每个类别的概率[0.1, 0.6, 0.1, 0.1, 0.1]
标签 多标签的每一维度都是0或者1,类别可以共存,或者存在依赖关系[0,1,0,0,1] 标签只有一个类别, 类别互斥0,1,2,3,4,5, 如果属于第1类[0,1,0,0,0]
损失函数 BCEWithLogitsLoss(自带sigmoid) CrossEntropyLoss(自带softmax)

参考:
CrossEntropyLoss() 和 nn.BCEWithLogitsLoss() 举例说明区别
多标签与多分类

相关推荐
白雪讲堂9 分钟前
【GEO从入门到精通】生成式引擎与其他 AI 技术的关系
大数据·人工智能·数据分析·智能电视·geo
魔力之心1 小时前
actuary notes[1]
人工智能·概率
Fine姐1 小时前
数据挖掘2.3-2.5:梯度,梯度下降以及凸性
人工智能·数据挖掘
2501_924730612 小时前
智慧城管复杂人流场景下识别准确率↑32%:陌讯多模态感知引擎实战解析
大数据·人工智能·算法·计算机视觉·目标跟踪·视觉检测·边缘计算
CONDIMENTTTT2 小时前
[机器学习]05-基于Fisher线性判别的鸢尾花数据集分类
人工智能·分类·数据挖掘
归辞...2 小时前
「iOS」————分类与扩展
ios·分类·cocoa
Kingfar_12 小时前
智能移动终端导航APP用户体验研究案例分享
人工智能·算法·人机交互·ux·用户界面·用户体验
攻城狮7号2 小时前
小米开源大模型 MiDashengLM-7B:不仅是“听懂”,更能“理解”声音
人工智能·midashenglm-7b·小米开源大模型·声音理解大模型
程序边界3 小时前
AI鉴伪技术:守护数字时代的真实性防线
人工智能