多标签与多分类的区别

多标签与多分类的区别

多标签 多分类
样本类别个数 一个或多个 只有一个
输出 一个标签维度的向量,每一维度是类别的概率[0.1, 0.6, 0.1, 0.1, 0.8] 输出属于每个类别的概率[0.1, 0.6, 0.1, 0.1, 0.1]
标签 多标签的每一维度都是0或者1,类别可以共存,或者存在依赖关系[0,1,0,0,1] 标签只有一个类别, 类别互斥0,1,2,3,4,5, 如果属于第1类[0,1,0,0,0]
损失函数 BCEWithLogitsLoss(自带sigmoid) CrossEntropyLoss(自带softmax)

参考:
CrossEntropyLoss() 和 nn.BCEWithLogitsLoss() 举例说明区别
多标签与多分类

相关推荐
SEO_juper3 分钟前
生成式引擎优化(GEO)终极指南:优化品牌在对话式AI中的呈现与推荐
人工智能·chatgpt·seo·geo·数字营销
小程故事多_8018 分钟前
AI Agent进阶架构:用渐进式披露驯服复杂性
人工智能·架构
人工智能AI技术1 小时前
【Agent从入门到实践】10 决策模块:Agent如何“思考问题”
人工智能
机器学习之心1 小时前
LASSO回归+特征选择,MATLAB
matlab·数据挖掘·回归
qq_527887871 小时前
联邦经典算法Fedavg实现
人工智能·深度学习
天天讯通1 小时前
数据公司与AI五大主流合作模式
人工智能
Clarence Liu2 小时前
AI Agent开发(2) - 深入解析 A2A 协议与 Go 实战指南
开发语言·人工智能·golang
综合热讯2 小时前
AUS GLOBAL 荣耀赞助 2026 LIL TOUR 高尔夫嘉年华
人工智能
小饼干超人2 小时前
详解向量数据库中的PQ算法(Product Quantization)
人工智能·算法·机器学习
砚边数影3 小时前
AI数学基础(一):线性代数核心,向量/矩阵运算的Java实现
java·数据库·人工智能·线性代数·矩阵·ai编程·金仓数据库