多标签与多分类的区别

多标签与多分类的区别

多标签 多分类
样本类别个数 一个或多个 只有一个
输出 一个标签维度的向量,每一维度是类别的概率[0.1, 0.6, 0.1, 0.1, 0.8] 输出属于每个类别的概率[0.1, 0.6, 0.1, 0.1, 0.1]
标签 多标签的每一维度都是0或者1,类别可以共存,或者存在依赖关系[0,1,0,0,1] 标签只有一个类别, 类别互斥0,1,2,3,4,5, 如果属于第1类[0,1,0,0,0]
损失函数 BCEWithLogitsLoss(自带sigmoid) CrossEntropyLoss(自带softmax)

参考:
CrossEntropyLoss() 和 nn.BCEWithLogitsLoss() 举例说明区别
多标签与多分类

相关推荐
芷栀夏5 小时前
CANN ops-math:为上层 AI 算子库提供核心支撑的基础计算模块深度拆解
人工智能·深度学习·transformer·cann
袁气满满~_~5 小时前
深度学习笔记三
人工智能·笔记·深度学习
风象南5 小时前
OpenSpec 与 Spec Kit 使用对比:规范驱动开发该选哪个?
人工智能
草莓熊Lotso6 小时前
Linux 文件描述符与重定向实战:从原理到 minishell 实现
android·linux·运维·服务器·数据库·c++·人工智能
Coder_Boy_7 小时前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱9 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º11 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee13 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º14 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys14 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark