OpenCV实现霍夫变换

返回:OpenCV系列文章目录(持续更新中......)

上一篇:OpenCV 如何实现边缘检测器
下一篇 :OpenCV 实现霍夫圆变换

目标

在本教程中,您将学习如何:

  • 使用 OpenCV 函数 HoughLines() 和 **HoughLinesP()**检测图像中的线条。
  • 注:由于输入法问题按Q替代进行角度说明。

理论

注意

下面的解释属于 Bradski 和 Kaehler 的 Learning OpenCV 一书。

Hough 线变换

  1. Hough 线变换是用于检测直线的变换。
  2. 要应用变换,首先需要边缘检测预处理。

它是如何工作的?

  1. 如您所知,图像空间中的一条线可以用两个变量表示。例如:
    1. 在**笛卡尔坐标系中:**参数:(m,b)
    2. 极坐标系中: 参数:(r,Q)

对于 Hough 变换,我们将在 Polar 系统中表示线。因此,直线方程可以写成:

排列项:

  1. 一般来说,对于每个点 \((x_{0}, y_{0})\),我们可以将通过该点的线族定义为:

    这意味着每对 \(r_{\theta},\theta)\) 表示经过 \((x_{0}, y_{0})\) 的每条线。

  2. 如果对于给定的(x0,有),我们绘制穿过它的线族,我们得到一个正弦曲线。例如,对于 (x0=8)和(y0=6,我们得到以下图(在平面plane Q~r中):

我们只考虑(r<0)和这样的点。

  1. 我们可以对图像中的所有点执行上述相同的操作。如果两个不同点的曲线在平面 Q~r中相交,则表示两个点属于同一条直线。例如,按照上面的例子,再画两个点的图:X1=4,y1=9 和x2=12,y2=3,我们得到:

这三个图在一个点(0.925,9.6)相交,这些坐标是参数(Q,r)或(x0,y0)和(x1,y1)所在的线。

  1. 以上所有内容是什么意思?这意味着通常可以通过查找曲线之间的交点数来检测 一条线。相交的曲线越多,意味着该相交所表示的直线具有更多的点。通常,我们可以定义检测 一条线所需的最小交叉点数的阈值
  2. 这就是 Hough Line Transform 的作用。它跟踪图像中每个点的曲线之间的交点。如果交点数高于某个阈值,则将其声明为具有交点参数(Q,r0)的线。

标准和概率 Hough 线变换

OpenCV 实现了两种类型的 Hough 线变换:

a. 标准 Hough 变换

  • 它几乎包含我们在上一节中解释的内容。结果,它给你一个夫妻向量 (Q,r0)
  • 在 OpenCV 中,它是使用函数 HoughLines()实现的

b. 概率霍夫线变换

  • 更高效地实现 Hough 线变换。它给出检测到的行的极值(x0,y0,x1,y1)
  • 在 OpenCV 中,它是使用函数 HoughLinesP()实现的

这个程序是做什么的?

  • 加载图像
  • 应用标准 Hough 线变换概率线变换
  • 在三个窗口中显示原始图像和检测到的线条。

C++代码

们将要解释的示例代码可以从这里下载。可以在此处找到一个稍微花哨的版本(它显示了 Hough 标准和概率,带有用于更改阈值的跟踪栏)。

cpp 复制代码
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
 
using namespace cv;
using namespace std;
 
int main(int argc, char** argv)
{
 // Declare the output variables
 Mat dst, cdst, cdstP;
 
 const char* default_file = "sudoku.png";
 const char* filename = argc >=2 ? argv[1] : default_file;
 
 // Loads an image
 Mat src = imread( samples::findFile( filename ), IMREAD_GRAYSCALE );
 
 // Check if image is loaded fine
 if(src.empty()){
 printf(" Error opening image\n");
 printf(" Program Arguments: [image_name -- default %s] \n", default_file);
 return -1;
 }
 
 // Edge detection
 Canny(src, dst, 50, 200, 3);
 
 // Copy edges to the images that will display the results in BGR
 cvtColor(dst, cdst, COLOR_GRAY2BGR);
 cdstP = cdst.clone();
 
 // Standard Hough Line Transform
 vector<Vec2f> lines; // will hold the results of the detection
 HoughLines(dst, lines, 1, CV_PI/180, 150, 0, 0 ); // runs the actual detection
 // Draw the lines
 for( size_t i = 0; i < lines.size(); i++ )
 {
 float rho = lines[i][0], theta = lines[i][1];
 Point pt1, pt2;
 double a = cos(theta), b = sin(theta);
 double x0 = a*rho, y0 = b*rho;
 pt1.x = cvRound(x0 + 1000*(-b));
 pt1.y = cvRound(y0 + 1000*(a));
 pt2.x = cvRound(x0 - 1000*(-b));
 pt2.y = cvRound(y0 - 1000*(a));
 line( cdst, pt1, pt2, Scalar(0,0,255), 3, LINE_AA);
 }
 
 // Probabilistic Line Transform
 vector<Vec4i> linesP; // will hold the results of the detection
 HoughLinesP(dst, linesP, 1, CV_PI/180, 50, 50, 10 ); // runs the actual detection
 // Draw the lines
 for( size_t i = 0; i < linesP.size(); i++ )
 {
 Vec4i l = linesP[i];
 line( cdstP, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0,0,255), 3, LINE_AA);
 }
 
 // Show results
 imshow("Source", src);
 imshow("Detected Lines (in red) - Standard Hough Line Transform", cdst);
 imshow("Detected Lines (in red) - Probabilistic Line Transform", cdstP);
 
 // Wait and Exit
 waitKey();
 return 0;
}

代码片段解释

加载图像:

cpp 复制代码
 const char* default_file = "sudoku.png";
 const char* filename = argc >=2 ? argv[1] : default_file;
 
 // Loads an image
 Mat src = imread( samples::findFile( filename ), IMREAD_GRAYSCALE );
 
 // Check if image is loaded fine
 if(src.empty()){
 printf(" Error opening image\n");
 printf(" Program Arguments: [image_name -- default %s] \n", default_file);
 return -1;
 }

使用 Canny 检测器检测图像的边缘:

cpp 复制代码
 // Edge detection
 Canny(src, dst, 50, 200, 3);

现在我们将应用 Hough 线变换。我们将解释如何使用可用于此目的的两个 OpenCV 函数。

标准 Hough 线变换:

首先,应用转换:

cpp 复制代码
 // Standard Hough Line Transform
 vector<Vec2f> lines; // will hold the results of the detection
 HoughLines(dst, lines, 1, CV_PI/180, 150, 0, 0 ); // runs the actual detection
  • 使用以下参数:
    • dst:边缘检测器的输出。它应该是灰度图像(尽管实际上它是二进制图像)
    • lines:将存储检测到的线的参数的向量(r,Q)
    • rho :参数的分辨率,单位为r像素。我们使用 1 个像素。
    • theta :参数的分辨率,单位为Q弧度。我们使用 1 度 (CV_PI/180)
    • threshold:要"检测*"一条线的最小交叉点数
    • srnstn:默认参数为零。有关详细信息,请查看 OpenCV 参考。

然后通过绘制线条来显示结果。

cpp 复制代码
 // Draw the lines
 for( size_t i = 0; i < lines.size(); i++ )
 {
 float rho = lines[i][0], theta = lines[i][1];
 Point pt1, pt2;
 double a = cos(theta), b = sin(theta);
 double x0 = a*rho, y0 = b*rho;
 pt1.x = cvRound(x0 + 1000*(-b));
 pt1.y = cvRound(y0 + 1000*(a));
 pt2.x = cvRound(x0 - 1000*(-b));
 pt2.y = cvRound(y0 - 1000*(a));
 line( cdst, pt1, pt2, Scalar(0,0,255), 3, LINE_AA);
 }

概率 Hough 线变换

首先,应用转换:

cpp 复制代码
 // Probabilistic Line Transform
 vector<Vec4i> linesP; // will hold the results of the detection
 HoughLinesP(dst, linesP, 1, CV_PI/180, 50, 50, 10 ); // runs the actual detection
  • 带有参数:
    • dst:边缘检测器的输出。它应该是灰度图像(尽管实际上它是二进制图像)
    • lines:将存储检测到的线的参数的向量(xstart,ystart,xend,yend)
    • rho :参数的分辨率,单位为r像素。我们使用 1 个像素。
    • theta :参数的分辨率,单位为Q弧度。我们使用 1 度 (CV_PI/180)
    • threshold:要"检测*"一条线的最小交叉点数
    • minLineLength:可以形成一条线的最小点数。小于此点数的线将被忽略。
    • maxLineGap:在同一条直线上要考虑的两点之间的最大间隙。

然后通过绘制线条来显示结果。

cpp 复制代码
 // Draw the lines
 for( size_t i = 0; i < linesP.size(); i++ )
 {
 Vec4i l = linesP[i];
 line( cdstP, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0,0,255), 3, LINE_AA);
 }

显示原始图像和检测到的线:

cpp 复制代码
 // Show results
 imshow("Source", src);
 imshow("Detected Lines (in red) - Standard Hough Line Transform", cdst);
 imshow("Detected Lines (in red) - Probabilistic Line Transform", cdstP);

等到用户退出程序

cpp 复制代码
 // Wait and Exit
 waitKey();
 return 0;

结果

注意

下面的结果是使用我们在代码 部分提到的稍微花哨的版本获得的。它仍然实现与上述相同的内容,只是为阈值添加了跟踪栏。使用输入图像,例如数独图像。我们通过使用标准 Hough 线变换得到以下结果:

通过使用概率 Hough 线变换:

您可能会发现,在更改阈值时,检测到的行数会发生变化。解释是显而易见的:如果建立更高的阈值,则检测到的行将减少(因为您将需要更多的点来声明检测到的行)。

参考文献:

1、《Hough Line Transform》-----Ana Huamán

相关推荐
zh路西法5 分钟前
【C++决策和状态管理】从状态模式,有限状态机,行为树到决策树(一):从电梯出发的状态模式State Pattern
c++·决策树·状态模式
DREAM依旧7 分钟前
隐马尔科夫模型|前向算法|Viterbi 算法
人工智能
轩辰~19 分钟前
网络协议入门
linux·服务器·开发语言·网络·arm开发·c++·网络协议
GocNeverGiveUp20 分钟前
机器学习2-NumPy
人工智能·机器学习·numpy
lxyzcm39 分钟前
C++23新特性解析:[[assume]]属性
java·c++·spring boot·c++23
蜀黍@猿1 小时前
C/C++基础错题归纳
c++
雨中rain1 小时前
Linux -- 从抢票逻辑理解线程互斥
linux·运维·c++
B站计算机毕业设计超人1 小时前
计算机毕业设计PySpark+Hadoop中国城市交通分析与预测 Python交通预测 Python交通可视化 客流量预测 交通大数据 机器学习 深度学习
大数据·人工智能·爬虫·python·机器学习·课程设计·数据可视化
学术头条1 小时前
清华、智谱团队:探索 RLHF 的 scaling laws
人工智能·深度学习·算法·机器学习·语言模型·计算语言学
18号房客1 小时前
一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·sklearn