RIME-SVM,基于RIME寒冰优化算法优化SVM支持向量机回归预测 (多输入单输出)-附代码

支持向量机(SVM)

支持向量机(SVM)是一种广泛用于分类和回归的强大监督学习算法。在回归任务中,特别是在SVM被用作支持向量回归(SVR)时,目标是找到一个函数,这个函数在给定的数据点上有最小的偏差,同时尽量保持模型的平滑性,即尽量小的模型复杂度。

支持向量回归(SVR)

在SVR中,我们不仅要让预测误差尽可能小,还要保证模型不会过于复杂,避免过拟合。这通常通过引入一个损失函数来实现,该损失函数只惩罚超出预设误差容忍阈值(ε)的预测。

RIME优化算法

关于RIME(寒冰)优化算法。

RIME-SVM的结合原理

结合RIME算法和SVM进行回归预测,很可能是使用RIME算法来优化SVM的关键参数,比如:

  1. 惩罚参数C:控制误差项与保持决策面平滑之间的权衡。
  2. 核函数参数(如高斯核的γ):决定了数据映射到新空间的分布。

在SVR中,选择合适的参数C和γ对模型的性能有极大的影响。RIME算法可以被用来自动寻找这些参数的最优值,而不是依赖于手工调整或传统的网格搜索方法。

实施步骤可能包括:
  1. 初始化:随机生成一组SVM参数的初始候选解。
  2. 迭代优化
    • 使用RIME算法的规则更新参数。
    • 每一步评估使用当前参数的SVM模型性能。
    • 根据性能反馈调整参数,追求更优解。
  3. 收敛判定:当达到一定迭代次数或解的改进不再显著时,停止优化。
  4. 验证:使用最终优化得到的参数,构建SVR模型,并在独立测试集上验证模型性能。

总的来说,RIME-SVM利用RIME算法的全局搜索能力,可以更系统地探索参数空间,有助于找到更合适的SVM参数配置,从而提升模型的预测性能。这种方法尤其适用于参数选择对结果影响较大且参数空间较大的情形。

结果

获取方式

Matlab 复制代码
https://mbd.pub/o/bread/mbd-ZZ6Ul5dq
相关推荐
SweetCode7 分钟前
裴蜀定理:整数解的奥秘
数据结构·python·线性代数·算法·机器学习
ゞ 正在缓冲99%…20 分钟前
leetcode76.最小覆盖子串
java·算法·leetcode·字符串·双指针·滑动窗口
xuanjiong21 分钟前
纯个人整理,蓝桥杯使用的算法模板day2(0-1背包问题),手打个人理解注释,超全面,且均已验证成功(附带详细手写“模拟流程图”,全网首个
算法·蓝桥杯·动态规划
惊鸿.Jh40 分钟前
【滑动窗口】3254. 长度为 K 的子数组的能量值 I
数据结构·算法·leetcode
明灯L41 分钟前
《函数基础与内存机制深度剖析:从 return 语句到各类经典编程题详解》
经验分享·python·算法·链表·经典例题
碳基学AI1 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义免费下载方法
大数据·人工智能·python·gpt·算法·语言模型·集成学习
补三补四1 小时前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习
独好紫罗兰1 小时前
洛谷题单3-P5718 【深基4.例2】找最小值-python-流程图重构
开发语言·python·算法
正脉科工 CAE仿真1 小时前
基于ANSYS 概率设计和APDL编程的结构可靠性设计分析
人工智能·python·算法
Dovis(誓平步青云)2 小时前
【数据结构】排序算法(中篇)·处理大数据的精妙
c语言·数据结构·算法·排序算法·学习方法