排序3——C语言

排序

  • [1. 归并排序](#1. 归并排序)
  • [2. 计数排序](#2. 计数排序)
  • [3. 各排序的稳定性及复杂度](#3. 各排序的稳定性及复杂度)

1. 归并排序

归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。

思路:将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。

下图为归并的全过程

将序列分割,若子区间无序,对子区间再分割,直至子区间有序(只有一个数时)再进行合并(相当于合并两个有序数组)。合并数据时,不能直接覆盖再原数组,会造成数据丢失,因此需要开辟一个辅助数组。

c 复制代码
//归并排序
//复杂度O(N*logN)
void _MergeSort(int* array, int* tmp, int begin, int end)//左右闭区间
{
	//只有一个值,不用归并
	if (begin == end)
		return;

	//分成两组分别递归,归并
	int mid = (begin + end) / 2;
	_MergeSort(array, tmp, begin, mid);
	_MergeSort(array, tmp, mid + 1, end);

	int begin1 = begin, end1 = mid;
	int begin2 = mid + 1, end2 = end;
	int i = begin;
 
    //归并过程
	while (begin1 <= end1 && begin2 <= end2)
	{
		if (array[begin1] <= array[begin2])
		{
			tmp[i++] = array[begin1++];
		}
		else
		{
			tmp[i++] = array[begin2++];
		}
	}

	while (begin1 <= end1)
	{
		tmp[i++] = array[begin1++];
	}
	while (begin2 <= end2)
	{
		tmp[i++] = array[begin2++];
	}

	//拷贝回原数组
	memcpy(array + begin, tmp + begin, sizeof(int) * (end - begin + 1));
}

void MergeSort(int* array, int numsArr)
{
	//开辟辅助数组
	int* tmp = (int*)malloc(sizeof(int) * numsArr);
	if (tmp == NULL)
	{
		return;
	}

	_MergeSort(array, tmp, 0, numsArr - 1);

	free(tmp);
	tmp = NULL;
}

归并排序的缺点,空间复杂度为O(N),即额外需要一块辅助空间。

2. 计数排序

计数排序的思路:

  1. 统计相同元素出现次数(遍历一遍数据即可)
  2. 根据统计的结果将序列回收到原来的序列中

举例如下图

这里会面临两个问题

  1. 数据过大,数据范围分散
  2. 数据有负数,下标没有负数
    问题一会导致一个问题,开的辅助空间很大,比如数据为{ 1 ,19 ,33,50,69},五个数需要开辟70个空间,太浪费。事实上,计数排序不适用于数据范围分散的情况,如果当数据范围很大很 分数时,就不要采用计数排序了。

问题二可以采用相对映射的方法来解决。让每一个数都减去最小值,那么如果有负数,减去最小值(也是负数,可能是本身)之后的值肯定大于等于0,就可以满足数组的下标了。还原回去时,数据再加上最小值即可。

c 复制代码
//计数排序
//时间复杂度O(N+range),空间复杂度O(range)
//适合于数据范围小的情况
void CountSort(int* array, int numsArr)
{
    //最大最小值
	int max = array[0], min = array[0];
	for (int i = 1; i < numsArr; i++)
	{
		if (array[i] < min)
			min = array[i];
		if (array[i] > max)
			max = array[i];
	}
    //开空间
	int range = max - min + 1;
	int* count = (int*)calloc(range, sizeof(int));
	if (count == NULL)
		return;

	//统计每个数出现的次数(相对映射)
	for (int i = 0; i < numsArr; i++)
	{
		count[array[i] - min]++;
	}
	//修改数组
	int j = 0;
	for (int i = 0; i < range; i++)
	{
		while (count[i]--)
		{
			array[j++] = i + min;
		}
	}
}

3. 各排序的稳定性及复杂度

有关常见排序就介绍完毕了,总结一下复杂度和稳定性。一个排序的稳定性是指,两个相同的值在排序前后的相对位置没有改变,则该排序为稳定排序。否则不稳定。

冒泡排序

相邻数据不等才会进行交换,因此为稳定排序。时间复杂度:O(N^2)空间复杂度O(1)

直接插入排序

数据不相等才会进行插入,两个相等的数,在插入前后不会改变相对位置,因此为稳定排序

时间复杂度O(N^2)空间复杂度O(1)

归并排序
稳定排序,时间复杂度O(N*logN)空间复杂度O(N)

希尔排序

不稳定排序,且看下面的例子。时间复杂度O(N^1.3)空间复杂度O(1)

直接选择排序

不稳定,例子如下图,时间复杂度O(N^2)空间复杂度O(1)

堆排序

不稳定,例子如下图,时间复杂度O(N*logN)空间复杂度O(1)

快速排序

不稳定,例子如下图,时间复杂度O(N*logN)空间复杂度O(logN)

总结:三稳定四不稳定。关于常用排序就介绍完了。

相关推荐
Fuxiao___4 分钟前
不使用递归的决策树生成算法
算法
我爱工作&工作love我9 分钟前
1435:【例题3】曲线 一本通 代替三分
c++·算法
娃娃丢没有坏心思38 分钟前
C++20 概念与约束(2)—— 初识概念与约束
c语言·c++·现代c++
白-胖-子1 小时前
【蓝桥等考C++真题】蓝桥杯等级考试C++组第13级L13真题原题(含答案)-统计数字
开发语言·c++·算法·蓝桥杯·等考·13级
workflower1 小时前
数据结构练习题和答案
数据结构·算法·链表·线性回归
好睡凯1 小时前
c++写一个死锁并且自己解锁
开发语言·c++·算法
Sunyanhui11 小时前
力扣 二叉树的直径-543
算法·leetcode·职场和发展
一个不喜欢and不会代码的码农1 小时前
力扣105:从先序和中序序列构造二叉树
数据结构·算法·leetcode
前端郭德纲1 小时前
浏览器是加载ES6模块的?
javascript·算法
SoraLuna1 小时前
「Mac玩转仓颉内测版10」PTA刷题篇1 - L1-001 Hello World
算法·macos·cangjie