基于深度学习神经网络的AI图片上色DDcolor系统源码

第一步:DDcolor介绍

DDColor 是最新的 SOTA 图像上色算法,能够对输入的黑白图像生成自然生动的彩色结果,使用 UNet 结构的骨干网络和图像解码器分别实现图像特征提取和特征图上采样,并利用 Transformer 结构的颜色解码器完成基于视觉语义的颜色查询,最终聚合输出彩色通道预测结果。

它甚至可以对动漫游戏中的风景进行着色/重新着色,将您的动画风景转变为逼真的现实生活风格!(图片来源:原神)

第二步:DDcolor网络结构

算法整体流程如下图,使用 UNet 结构的骨干网络和图像解码器分别实现图像特征提取和特征图上采样,并利用 Transformer 结构的颜色解码器完成基于视觉语义的颜色查询,最终聚合输出彩色通道预测结果。

第三步:模型代码展示

python 复制代码
import os
import torch
from collections import OrderedDict
from os import path as osp
from tqdm import tqdm
import numpy as np

from basicsr.archs import build_network
from basicsr.losses import build_loss
from basicsr.metrics import calculate_metric
from basicsr.utils import get_root_logger, imwrite, tensor2img
from basicsr.utils.img_util import tensor_lab2rgb
from basicsr.utils.dist_util import master_only
from basicsr.utils.registry import MODEL_REGISTRY
from .base_model import BaseModel
from basicsr.metrics.custom_fid import INCEPTION_V3_FID, get_activations, calculate_activation_statistics, calculate_frechet_distance
from basicsr.utils.color_enhance import color_enhacne_blend


@MODEL_REGISTRY.register()
class ColorModel(BaseModel):
    """Colorization model for single image colorization."""

    def __init__(self, opt):
        super(ColorModel, self).__init__(opt)

        # define network net_g
        self.net_g = build_network(opt['network_g'])
        self.net_g = self.model_to_device(self.net_g)
        self.print_network(self.net_g)
        
        # load pretrained model for net_g
        load_path = self.opt['path'].get('pretrain_network_g', None)
        if load_path is not None:
            param_key = self.opt['path'].get('param_key_g', 'params')
            self.load_network(self.net_g, load_path, self.opt['path'].get('strict_load_g', True), param_key)

        if self.is_train:
            self.init_training_settings()

    def init_training_settings(self):
        train_opt = self.opt['train']

        self.ema_decay = train_opt.get('ema_decay', 0)
        if self.ema_decay > 0:
            logger = get_root_logger()
            logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}')
            # define network net_g with Exponential Moving Average (EMA)
            # net_g_ema is used only for testing on one GPU and saving
            # There is no need to wrap with DistributedDataParallel
            self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
            # load pretrained model
            load_path = self.opt['path'].get('pretrain_network_g', None)
            if load_path is not None:
                self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
            else:
                self.model_ema(0)  # copy net_g weight
            self.net_g_ema.eval()

        # define network net_d
        self.net_d = build_network(self.opt['network_d'])
        self.net_d = self.model_to_device(self.net_d)
        self.print_network(self.net_d)

        # load pretrained model for net_d
        load_path = self.opt['path'].get('pretrain_network_d', None)
        if load_path is not None:
            param_key = self.opt['path'].get('param_key_d', 'params')
            self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True), param_key)

        self.net_g.train()
        self.net_d.train()

        # define losses
        if train_opt.get('pixel_opt'):
            self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
        else:
            self.cri_pix = None

        if train_opt.get('perceptual_opt'):
            self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)
        else:
            self.cri_perceptual = None

        if train_opt.get('gan_opt'):
            self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)
        else:
            self.cri_gan = None

        if self.cri_pix is None and self.cri_perceptual is None:
            raise ValueError('Both pixel and perceptual losses are None.')

        if train_opt.get('colorfulness_opt'):
            self.cri_colorfulness = build_loss(train_opt['colorfulness_opt']).to(self.device)
        else:
            self.cri_colorfulness = None

        # set up optimizers and schedulers
        self.setup_optimizers()
        self.setup_schedulers()

        # set real dataset cache for fid metric computing
        self.real_mu, self.real_sigma = None, None
        if self.opt['val'].get('metrics') is not None and self.opt['val']['metrics'].get('fid') is not None:
            self._prepare_inception_model_fid()

    def setup_optimizers(self):
        train_opt = self.opt['train']
        # optim_params_g = []
        # for k, v in self.net_g.named_parameters():
        #     if v.requires_grad:
        #         optim_params_g.append(v)
        #     else:
        #         logger = get_root_logger()
        #         logger.warning(f'Params {k} will not be optimized.')
        optim_params_g = self.net_g.parameters()

        # optimizer g
        optim_type = train_opt['optim_g'].pop('type')
        self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, **train_opt['optim_g'])
        self.optimizers.append(self.optimizer_g)

        # optimizer d
        optim_type = train_opt['optim_d'].pop('type')
        self.optimizer_d = self.get_optimizer(optim_type, self.net_d.parameters(), **train_opt['optim_d'])
        self.optimizers.append(self.optimizer_d)
    
    def feed_data(self, data):
        self.lq = data['lq'].to(self.device)
        self.lq_rgb = tensor_lab2rgb(torch.cat([self.lq, torch.zeros_like(self.lq), torch.zeros_like(self.lq)], dim=1))
        if 'gt' in data:
            self.gt = data['gt'].to(self.device)
            self.gt_lab = torch.cat([self.lq, self.gt], dim=1)
            self.gt_rgb = tensor_lab2rgb(self.gt_lab)

            if self.opt['train'].get('color_enhance', False):
                for i in range(self.gt_rgb.shape[0]):
                    self.gt_rgb[i] = color_enhacne_blend(self.gt_rgb[i], factor=self.opt['train'].get('color_enhance_factor'))

    def optimize_parameters(self, current_iter):
        # optimize net_g
        for p in self.net_d.parameters():
            p.requires_grad = False
        self.optimizer_g.zero_grad()
        
        self.output_ab = self.net_g(self.lq_rgb)
        self.output_lab = torch.cat([self.lq, self.output_ab], dim=1)
        self.output_rgb = tensor_lab2rgb(self.output_lab)

        l_g_total = 0
        loss_dict = OrderedDict()
        # pixel loss
        if self.cri_pix:
            l_g_pix = self.cri_pix(self.output_ab, self.gt)
            l_g_total += l_g_pix
            loss_dict['l_g_pix'] = l_g_pix

        # perceptual loss
        if self.cri_perceptual:
            l_g_percep, l_g_style = self.cri_perceptual(self.output_rgb, self.gt_rgb)
            if l_g_percep is not None:
                l_g_total += l_g_percep
                loss_dict['l_g_percep'] = l_g_percep
            if l_g_style is not None:
                l_g_total += l_g_style
                loss_dict['l_g_style'] = l_g_style
        # gan loss
        if self.cri_gan:
            fake_g_pred = self.net_d(self.output_rgb)
            l_g_gan = self.cri_gan(fake_g_pred, target_is_real=True, is_disc=False)
            l_g_total += l_g_gan
            loss_dict['l_g_gan'] = l_g_gan
        # colorfulness loss
        if self.cri_colorfulness:
            l_g_color = self.cri_colorfulness(self.output_rgb)
            l_g_total += l_g_color
            loss_dict['l_g_color'] = l_g_color

        l_g_total.backward()
        self.optimizer_g.step()

        # optimize net_d
        for p in self.net_d.parameters():
            p.requires_grad = True
        self.optimizer_d.zero_grad()

        real_d_pred = self.net_d(self.gt_rgb)
        fake_d_pred = self.net_d(self.output_rgb.detach())
        l_d = self.cri_gan(real_d_pred, target_is_real=True, is_disc=True) + self.cri_gan(fake_d_pred, target_is_real=False, is_disc=True)
        loss_dict['l_d'] = l_d
        loss_dict['real_score'] = real_d_pred.detach().mean()
        loss_dict['fake_score'] = fake_d_pred.detach().mean()

        l_d.backward()
        self.optimizer_d.step()

        self.log_dict = self.reduce_loss_dict(loss_dict)

        if self.ema_decay > 0:
            self.model_ema(decay=self.ema_decay)

    def get_current_visuals(self):
        out_dict = OrderedDict()
        out_dict['lq'] = self.lq_rgb.detach().cpu()
        out_dict['result'] = self.output_rgb.detach().cpu()
        if self.opt['logger'].get('save_snapshot_verbose', False):  # only for verbose
            self.output_lab_chroma = torch.cat([torch.ones_like(self.lq) * 50, self.output_ab], dim=1)
            self.output_rgb_chroma = tensor_lab2rgb(self.output_lab_chroma)
            out_dict['result_chroma'] = self.output_rgb_chroma.detach().cpu()

        if hasattr(self, 'gt'):
            out_dict['gt'] = self.gt_rgb.detach().cpu()
            if self.opt['logger'].get('save_snapshot_verbose', False):  # only for verbose
                self.gt_lab_chroma = torch.cat([torch.ones_like(self.lq) * 50, self.gt], dim=1)
                self.gt_rgb_chroma = tensor_lab2rgb(self.gt_lab_chroma)
                out_dict['gt_chroma'] = self.gt_rgb_chroma.detach().cpu()
        return out_dict

    def test(self):
        if hasattr(self, 'net_g_ema'):
            self.net_g_ema.eval()
            with torch.no_grad():
                self.output_ab = self.net_g_ema(self.lq_rgb)
                self.output_lab = torch.cat([self.lq, self.output_ab], dim=1)
                self.output_rgb = tensor_lab2rgb(self.output_lab)
        else:
            self.net_g.eval()
            with torch.no_grad():
                self.output_ab = self.net_g(self.lq_rgb)
                self.output_lab = torch.cat([self.lq, self.output_ab], dim=1)
                self.output_rgb = tensor_lab2rgb(self.output_lab)
            self.net_g.train()
    
    def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
        if self.opt['rank'] == 0:
            self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
    
    def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
        dataset_name = dataloader.dataset.opt['name']
        with_metrics = self.opt['val'].get('metrics') is not None
        use_pbar = self.opt['val'].get('pbar', False)

        if with_metrics and not hasattr(self, 'metric_results'):  # only execute in the first run
            self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
        # initialize the best metric results for each dataset_name (supporting multiple validation datasets)
        if with_metrics:
            self._initialize_best_metric_results(dataset_name)
        # zero self.metric_results
        if with_metrics:
            self.metric_results = {metric: 0 for metric in self.metric_results}

        metric_data = dict()
        if use_pbar:
            pbar = tqdm(total=len(dataloader), unit='image')
        
        if self.opt['val']['metrics'].get('fid') is not None:
            fake_acts_set, acts_set = [], []

        for idx, val_data in enumerate(dataloader):
            # if idx == 100:
            #     break
            img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
            if hasattr(self, 'gt'):
                del self.gt
            self.feed_data(val_data)
            self.test()

            visuals = self.get_current_visuals()
            sr_img = tensor2img([visuals['result']])
            metric_data['img'] = sr_img
            if 'gt' in visuals:
                gt_img = tensor2img([visuals['gt']])
                metric_data['img2'] = gt_img

            torch.cuda.empty_cache()

            if save_img:
                if self.opt['is_train']:
                    save_dir = osp.join(self.opt['path']['visualization'], img_name)
                    for key in visuals:
                        save_path = os.path.join(save_dir, '{}_{}.png'.format(current_iter, key))
                        img = tensor2img(visuals[key])
                        imwrite(img, save_path)
                else:
                    if self.opt['val']['suffix']:
                        save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
                                                 f'{img_name}_{self.opt["val"]["suffix"]}.png')
                    else:
                        save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
                                                 f'{img_name}_{self.opt["name"]}.png')
                    imwrite(sr_img, save_img_path)

            if with_metrics:
                # calculate metrics
                for name, opt_ in self.opt['val']['metrics'].items():
                    if name == 'fid':
                        pred, gt = visuals['result'].cuda(), visuals['gt'].cuda()
                        fake_act = get_activations(pred, self.inception_model_fid, 1)
                        fake_acts_set.append(fake_act)
                        if self.real_mu is None:
                            real_act = get_activations(gt, self.inception_model_fid, 1)
                            acts_set.append(real_act)
                    else:
                        self.metric_results[name] += calculate_metric(metric_data, opt_)
            if use_pbar:
                pbar.update(1)
                pbar.set_description(f'Test {img_name}')
        if use_pbar:
            pbar.close()

        if with_metrics:
            if self.opt['val']['metrics'].get('fid') is not None:
                if self.real_mu is None:
                    acts_set = np.concatenate(acts_set, 0)
                    self.real_mu, self.real_sigma = calculate_activation_statistics(acts_set)
                fake_acts_set = np.concatenate(fake_acts_set, 0)
                fake_mu, fake_sigma = calculate_activation_statistics(fake_acts_set)

                fid_score = calculate_frechet_distance(self.real_mu, self.real_sigma, fake_mu, fake_sigma)
                self.metric_results['fid'] = fid_score

            for metric in self.metric_results.keys():
                if metric != 'fid':
                    self.metric_results[metric] /= (idx + 1)
                # update the best metric result
                self._update_best_metric_result(dataset_name, metric, self.metric_results[metric], current_iter)

            self._log_validation_metric_values(current_iter, dataset_name, tb_logger)

    def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
        log_str = f'Validation {dataset_name}\n'
        for metric, value in self.metric_results.items():
            log_str += f'\t # {metric}: {value:.4f}'
            if hasattr(self, 'best_metric_results'):
                log_str += (f'\tBest: {self.best_metric_results[dataset_name][metric]["val"]:.4f} @ '
                            f'{self.best_metric_results[dataset_name][metric]["iter"]} iter')
            log_str += '\n'

        logger = get_root_logger()
        logger.info(log_str)
        if tb_logger:
            for metric, value in self.metric_results.items():
                tb_logger.add_scalar(f'metrics/{dataset_name}/{metric}', value, current_iter)

    def _prepare_inception_model_fid(self, path='pretrain/inception_v3_google-1a9a5a14.pth'):
        incep_state_dict = torch.load(path, map_location='cpu')
        block_idx = INCEPTION_V3_FID.BLOCK_INDEX_BY_DIM[2048]
        self.inception_model_fid = INCEPTION_V3_FID(incep_state_dict, [block_idx])
        self.inception_model_fid.cuda()
        self.inception_model_fid.eval()

    @master_only
    def save_training_images(self, current_iter):
        visuals = self.get_current_visuals()
        save_dir = osp.join(self.opt['root_path'], 'experiments', self.opt['name'], 'training_images_snapshot')
        os.makedirs(save_dir, exist_ok=True)

        for key in visuals:
            save_path = os.path.join(save_dir, '{}_{}.png'.format(current_iter, key))
            img = tensor2img(visuals[key])
            imwrite(img, save_path)

    def save(self, epoch, current_iter):
        if hasattr(self, 'net_g_ema'):
            self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
        else:
            self.save_network(self.net_g, 'net_g', current_iter)
        self.save_network(self.net_d, 'net_d', current_iter)
        self.save_training_state(epoch, current_iter)

第四步:运行

第五步:整个工程的内容

代码的下载路径 (新窗口打开链接) 基于深度学习神经网络的AI图片上色DDcolor系统源码

有问题可以私信或者留言,有问必答

相关推荐
海棠AI实验室4 分钟前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself6 分钟前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董1 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
centurysee1 小时前
【最佳实践】Anthropic:Agentic系统实践案例
人工智能
mahuifa1 小时前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai
四口鲸鱼爱吃盐1 小时前
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
人工智能·pytorch·分类
落魄君子1 小时前
ELM分类-单隐藏层前馈神经网络(Single Hidden Layer Feedforward Neural Network, SLFN)
神经网络·分类·数据挖掘
蓝天星空1 小时前
Python调用open ai接口
人工智能·python
睡觉狂魔er1 小时前
自动驾驶控制与规划——Project 3: LQR车辆横向控制
人工智能·机器学习·自动驾驶
scan7241 小时前
LILAC采样算法
人工智能·算法·机器学习