【C】153 寻找旋转排序数组中的最小值

已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到:

若旋转 4 次,则可以得到 [4,5,6,7,0,1,2]

若旋转 7 次,则可以得到 [0,1,2,4,5,6,7]

注意,数组 [a[0], a[1], a[2], ..., a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]] 。

给你一个元素值 互不相同 的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。

你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。

c 复制代码
#include <stdio.h>

int findMin(int* nums, int numsSize) {
    int left = 0, right = numsSize - 1;
    
    while (left < right) {
        int mid = left + (right - left) / 2;
        
        if (nums[mid] > nums[right]) {
            left = mid + 1;
        } else {
            right = mid;
        }
    }
    
    return nums[left];
}

int main() {
    int nums[] = {4, 5, 6, 7, 0, 1, 2};
    int numsSize = sizeof(nums) / sizeof(nums[0]);
    
    int min = findMin(nums, numsSize);
    printf("最小元素为: %d\n", min);
    
    return 0;
}

总体思路,通过判断当前中间元素 nums[mid] 和最右侧元素 nums[right] 的大小关系,以确定最小元素的位置所在。

如果 nums[mid] > nums[right]:

这表示当前中间元素 nums[mid] 大于最右侧元素 nums[right],说明最小元素位于 mid 的右侧(包括 mid 自身)。因此,将搜索范围调整到 [mid + 1, right],即将 left 指针移到 mid + 1 处。

否则:

如果 nums[mid] <= nums[right],则说明最小元素位于 left 到 mid 之间(包括 mid)。因此,将搜索范围调整到 [left, mid],即将 right 指针移到 mid 处。

通过这样的判断和调整,不断缩小搜索范围,直到 left 和 right 指针相遇,找到最小元素的位置。

利用二分查找的思想,每次通过比较中间元素与右边界元素的大小关系,将搜索范围缩小一半,因此时间复杂度为 O(log n)。

这种算法充分利用了数组原本是升序排列的性质,并通过比较中间元素与右侧边界元素的大小关系,快速缩小搜索范围,从而找到最小值的位置。

相关推荐
CoovallyAIHub30 分钟前
为高空安全上双保险!无人机AI护航,YOLOv5秒判安全带,守护施工生命线
深度学习·算法·计算机视觉
huangzixuan100737 分钟前
08.18总结
算法·深度优先·图论
liang_jy44 分钟前
数组(Array)
数据结构·面试·trae
逆向菜鸟1 小时前
【摧毁比特币】椭圆曲线象限细分求k-陈墨仙
python·算法
DolphinDB1 小时前
DolphinDB 回测插件快速上手
算法
利刃大大1 小时前
【动态规划:路径问题】最小路径和 && 地下城游戏
算法·动态规划·cpp·路径问题
武大打工仔2 小时前
用 Java 复现哲学家就餐问题
算法
要做朋鱼燕2 小时前
【数据结构】用堆解决TOPK问题
数据结构·算法
秋难降3 小时前
LRU缓存算法(最近最少使用算法)——工业界缓存淘汰策略的 “默认选择”
数据结构·python·算法
XH华4 小时前
C语言第九章字符函数和字符串函数
c语言·开发语言