【C】153 寻找旋转排序数组中的最小值

已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到:

若旋转 4 次,则可以得到 [4,5,6,7,0,1,2]

若旋转 7 次,则可以得到 [0,1,2,4,5,6,7]

注意,数组 [a[0], a[1], a[2], ..., a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]] 。

给你一个元素值 互不相同 的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。

你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。

c 复制代码
#include <stdio.h>

int findMin(int* nums, int numsSize) {
    int left = 0, right = numsSize - 1;
    
    while (left < right) {
        int mid = left + (right - left) / 2;
        
        if (nums[mid] > nums[right]) {
            left = mid + 1;
        } else {
            right = mid;
        }
    }
    
    return nums[left];
}

int main() {
    int nums[] = {4, 5, 6, 7, 0, 1, 2};
    int numsSize = sizeof(nums) / sizeof(nums[0]);
    
    int min = findMin(nums, numsSize);
    printf("最小元素为: %d\n", min);
    
    return 0;
}

总体思路,通过判断当前中间元素 nums[mid] 和最右侧元素 nums[right] 的大小关系,以确定最小元素的位置所在。

如果 nums[mid] > nums[right]:

这表示当前中间元素 nums[mid] 大于最右侧元素 nums[right],说明最小元素位于 mid 的右侧(包括 mid 自身)。因此,将搜索范围调整到 [mid + 1, right],即将 left 指针移到 mid + 1 处。

否则:

如果 nums[mid] <= nums[right],则说明最小元素位于 left 到 mid 之间(包括 mid)。因此,将搜索范围调整到 [left, mid],即将 right 指针移到 mid 处。

通过这样的判断和调整,不断缩小搜索范围,直到 left 和 right 指针相遇,找到最小元素的位置。

利用二分查找的思想,每次通过比较中间元素与右边界元素的大小关系,将搜索范围缩小一半,因此时间复杂度为 O(log n)。

这种算法充分利用了数组原本是升序排列的性质,并通过比较中间元素与右侧边界元素的大小关系,快速缩小搜索范围,从而找到最小值的位置。

相关推荐
IT古董17 分钟前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
水木兰亭3 小时前
数据结构之——树及树的存储
数据结构·c++·学习·算法
Jess074 小时前
插入排序的简单介绍
数据结构·算法·排序算法
老一岁4 小时前
选择排序算法详解
数据结构·算法·排序算法
xindafu4 小时前
代码随想录算法训练营第四十二天|动态规划part9
算法·动态规划
xindafu4 小时前
代码随想录算法训练营第四十五天|动态规划part12
算法·动态规划
freexyn5 小时前
Matlab自学笔记六十一:快速上手解方程
数据结构·笔记·matlab
ysa0510305 小时前
Dijkstra 算法#图论
数据结构·算法·图论
一定要AK6 小时前
2025—暑期训练一
算法
一定要AK6 小时前
贪心专题练习
算法