Spark SQL编程初级实践

参考链接

Spark编程: Spark SQL基本操作 2020.11.01_df.agg("age"->"avg")-CSDN博客

RDD编程初级实践-CSDN博客

Spark和Hadoop的安装-CSDN博客

1. Spark SQL基本操作

html 复制代码
{ "id":1 , "name":" Ella" , "age":36 }
{ "id":2, "name":"Bob","age":29 }
{ "id":3 , "name":"Jack","age":29 }
{ "id":4 , "name":"Jim","age":28 }
{ "id":4 , "name":"Jim","age":28 }
{ "id":5 , "name":"Damon" }
{ "id":5 , "name":"Damon" }

创建employee.json文件

sudo vim employee.json
cat employee.json

启动spark-shell

cd /usr/local/spark/
./bin/spark-shell

1.1 查询所有数据

Scala 复制代码
import spark.implicits._
val df=spark.read.json("file:home/hadoop/下载/employee.json")
df.show()

import spark.implicits._是Spark的一个工具,帮助 我们将RDD 转换为DataFrame。

spark.read.json是 Apache Spark 中的一个方法,用于从 JSON 文件中读取数据并将其加载到 DataFrame 中。

df.show()用于显示DataFrame中的内容。

1.2 查询所有数据,并去除重复的数据

Scala 复制代码
df.distinct().show()

distinct()去重。

1.3 查询所有数据,打印时去除id字段

Scala 复制代码
df.drop(df("id")).show()

df.drop()用于删除DataFrame中指定的列。

1.4 筛选出age>30的记录

Scala 复制代码
df.filter(df("age")>30).show()

df.filter()用于根据指定条件过滤DataFrame中的行。

1.5 将数据按age分组

Scala 复制代码
df.groupBy(df("age")).count.show()

df.groupBy()用于根据指定的列对DataFrame进行分组。

df.count().show()用于显示分组后的DataFrame的内容。

1.6 将数据按name升序排列

Scala 复制代码
df.sort(df("name").asc).show()

df.sort()用于对DataFrame中的行进行排序(默认升序)。

升序asc

降序desc

这里"Ella"比"Bob"小是因为"Ella"字符串实际上是" Ella",所以他的第一个字符不是'E'而是' ',对应的ASCII,'E'是69,'B'是66,' '是32.

1.7 取出前3行数据

Scala 复制代码
df.show(3)

df.show(n)用于显示DataFrame的前n行。(n超出后会打印原始的大小)

1.8 查询所有记录的name列,并为其取别名为username

Scala 复制代码
df.select(df("name").as("username")).show()

df.select()用于选择DataFrame中指定的列。

1.9 查询年龄age的平均值

Scala 复制代码
df.agg("age"->"avg").show()

df.agg()用于对DataFrame进行聚合操作。

avg平均。

1.10 查询年龄age的最小值

Scala 复制代码
df.agg("age"->"min").show()

min最小。

2.编程实现将RDD转换为DataFrame

html 复制代码
1,Ella,36
2,Bob,29
3,Jack,29

3.编程实现利用DataFrame读写MySQL的数据

3.1 在MySQL数据库中新建数据库sparktest,再创建表employee

3.2 配置Spark通过JDBC连接数据库MySQL,编程实现利用DataFrame插入

相关推荐
猿小喵19 分钟前
MySQL四种隔离级别
数据库·mysql
Y编程小白25 分钟前
Redis可视化工具--RedisDesktopManager的安装
数据库·redis·缓存
洪小帅1 小时前
Django 的 `Meta` 类和外键的使用
数据库·python·django·sqlite
认知作战壳吉桔1 小时前
中国认知作战研究中心:从认知战角度分析2007年iPhone发布
大数据·人工智能·新质生产力·认知战·认知战研究中心
Bro_cat1 小时前
深入浅出JSON:数据交换的轻量级解决方案
java·ajax·java-ee·json
祁思妙想1 小时前
【LeetCode】--- MySQL刷题集合
数据库·mysql
V+zmm101342 小时前
教育培训微信小程序ssm+论文源码调试讲解
java·数据库·微信小程序·小程序·毕业设计
m0_748248022 小时前
【MySQL】C# 连接MySQL
数据库·mysql·c#
2301_780356702 小时前
为医院量身定制做“旧改”| 全视通物联网智慧病房
大数据·人工智能·科技·健康医疗
MrZhangBaby3 小时前
SQL-leetcode—1158. 市场分析 I
java·sql·leetcode