Spark SQL编程初级实践

参考链接

Spark编程: Spark SQL基本操作 2020.11.01_df.agg("age"->"avg")-CSDN博客

RDD编程初级实践-CSDN博客

Spark和Hadoop的安装-CSDN博客

1. Spark SQL基本操作

html 复制代码
{ "id":1 , "name":" Ella" , "age":36 }
{ "id":2, "name":"Bob","age":29 }
{ "id":3 , "name":"Jack","age":29 }
{ "id":4 , "name":"Jim","age":28 }
{ "id":4 , "name":"Jim","age":28 }
{ "id":5 , "name":"Damon" }
{ "id":5 , "name":"Damon" }

创建employee.json文件

sudo vim employee.json
cat employee.json

启动spark-shell

cd /usr/local/spark/
./bin/spark-shell

1.1 查询所有数据

Scala 复制代码
import spark.implicits._
val df=spark.read.json("file:home/hadoop/下载/employee.json")
df.show()

import spark.implicits._是Spark的一个工具,帮助 我们将RDD 转换为DataFrame。

spark.read.json是 Apache Spark 中的一个方法,用于从 JSON 文件中读取数据并将其加载到 DataFrame 中。

df.show()用于显示DataFrame中的内容。

1.2 查询所有数据,并去除重复的数据

Scala 复制代码
df.distinct().show()

distinct()去重。

1.3 查询所有数据,打印时去除id字段

Scala 复制代码
df.drop(df("id")).show()

df.drop()用于删除DataFrame中指定的列。

1.4 筛选出age>30的记录

Scala 复制代码
df.filter(df("age")>30).show()

df.filter()用于根据指定条件过滤DataFrame中的行。

1.5 将数据按age分组

Scala 复制代码
df.groupBy(df("age")).count.show()

df.groupBy()用于根据指定的列对DataFrame进行分组。

df.count().show()用于显示分组后的DataFrame的内容。

1.6 将数据按name升序排列

Scala 复制代码
df.sort(df("name").asc).show()

df.sort()用于对DataFrame中的行进行排序(默认升序)。

升序asc

降序desc

这里"Ella"比"Bob"小是因为"Ella"字符串实际上是" Ella",所以他的第一个字符不是'E'而是' ',对应的ASCII,'E'是69,'B'是66,' '是32.

1.7 取出前3行数据

Scala 复制代码
df.show(3)

df.show(n)用于显示DataFrame的前n行。(n超出后会打印原始的大小)

1.8 查询所有记录的name列,并为其取别名为username

Scala 复制代码
df.select(df("name").as("username")).show()

df.select()用于选择DataFrame中指定的列。

1.9 查询年龄age的平均值

Scala 复制代码
df.agg("age"->"avg").show()

df.agg()用于对DataFrame进行聚合操作。

avg平均。

1.10 查询年龄age的最小值

Scala 复制代码
df.agg("age"->"min").show()

min最小。

2.编程实现将RDD转换为DataFrame

html 复制代码
1,Ella,36
2,Bob,29
3,Jack,29

3.编程实现利用DataFrame读写MySQL的数据

3.1 在MySQL数据库中新建数据库sparktest,再创建表employee

3.2 配置Spark通过JDBC连接数据库MySQL,编程实现利用DataFrame插入

相关推荐
DolphinScheduler社区6 分钟前
大数据调度组件之Apache DolphinScheduler
大数据
SelectDB技术团队7 分钟前
兼顾高性能与低成本,浅析 Apache Doris 异步物化视图原理及典型场景
大数据·数据库·数据仓库·数据分析·doris
inventecsh23 分钟前
mongodb基础操作
数据库·mongodb
白云如幻27 分钟前
SQL99版链接查询语法
数据库·sql·mysql
爱吃烤鸡翅的酸菜鱼1 小时前
MySQL初学之旅(4)表的设计
数据库·sql·mysql·database
panpantt3211 小时前
【参会邀请】第二届大数据与数据挖掘国际会议(BDDM 2024)邀您相聚江城!
大数据·人工智能·数据挖掘
青云交1 小时前
大数据新视界 -- 大数据大厂之 Impala 性能优化:跨数据中心环境下的挑战与对策(上)(27 / 30)
大数据·性能优化·impala·案例分析·代码示例·跨数据中心·挑战对策
soso19682 小时前
DataWorks快速入门
大数据·数据仓库·信息可视化
The_Ticker2 小时前
CFD平台如何接入实时行情源
java·大数据·数据库·人工智能·算法·区块链·软件工程
java1234_小锋2 小时前
Elasticsearch中的节点(比如共20个),其中的10个选了一个master,另外10个选了另一个master,怎么办?
大数据·elasticsearch·jenkins