Spark SQL编程初级实践

参考链接

Spark编程: Spark SQL基本操作 2020.11.01_df.agg("age"->"avg")-CSDN博客

RDD编程初级实践-CSDN博客

Spark和Hadoop的安装-CSDN博客

1. Spark SQL基本操作

html 复制代码
{ "id":1 , "name":" Ella" , "age":36 }
{ "id":2, "name":"Bob","age":29 }
{ "id":3 , "name":"Jack","age":29 }
{ "id":4 , "name":"Jim","age":28 }
{ "id":4 , "name":"Jim","age":28 }
{ "id":5 , "name":"Damon" }
{ "id":5 , "name":"Damon" }

创建employee.json文件

复制代码
sudo vim employee.json
cat employee.json

启动spark-shell

复制代码
cd /usr/local/spark/
./bin/spark-shell

1.1 查询所有数据

Scala 复制代码
import spark.implicits._
val df=spark.read.json("file:home/hadoop/下载/employee.json")
df.show()

import spark.implicits._是Spark的一个工具,帮助 我们将RDD 转换为DataFrame。

spark.read.json是 Apache Spark 中的一个方法,用于从 JSON 文件中读取数据并将其加载到 DataFrame 中。

df.show()用于显示DataFrame中的内容。

1.2 查询所有数据,并去除重复的数据

Scala 复制代码
df.distinct().show()

distinct()去重。

1.3 查询所有数据,打印时去除id字段

Scala 复制代码
df.drop(df("id")).show()

df.drop()用于删除DataFrame中指定的列。

1.4 筛选出age>30的记录

Scala 复制代码
df.filter(df("age")>30).show()

df.filter()用于根据指定条件过滤DataFrame中的行。

1.5 将数据按age分组

Scala 复制代码
df.groupBy(df("age")).count.show()

df.groupBy()用于根据指定的列对DataFrame进行分组。

df.count().show()用于显示分组后的DataFrame的内容。

1.6 将数据按name升序排列

Scala 复制代码
df.sort(df("name").asc).show()

df.sort()用于对DataFrame中的行进行排序(默认升序)。

升序asc

降序desc

这里"Ella"比"Bob"小是因为"Ella"字符串实际上是" Ella",所以他的第一个字符不是'E'而是' ',对应的ASCII,'E'是69,'B'是66,' '是32.

1.7 取出前3行数据

Scala 复制代码
df.show(3)

df.show(n)用于显示DataFrame的前n行。(n超出后会打印原始的大小)

1.8 查询所有记录的name列,并为其取别名为username

Scala 复制代码
df.select(df("name").as("username")).show()

df.select()用于选择DataFrame中指定的列。

1.9 查询年龄age的平均值

Scala 复制代码
df.agg("age"->"avg").show()

df.agg()用于对DataFrame进行聚合操作。

avg平均。

1.10 查询年龄age的最小值

Scala 复制代码
df.agg("age"->"min").show()

min最小。

2.编程实现将RDD转换为DataFrame

html 复制代码
1,Ella,36
2,Bob,29
3,Jack,29

3.编程实现利用DataFrame读写MySQL的数据

3.1 在MySQL数据库中新建数据库sparktest,再创建表employee

3.2 配置Spark通过JDBC连接数据库MySQL,编程实现利用DataFrame插入

相关推荐
可涵不会debug1 小时前
【IoTDB】时序数据库选型指南:工业大数据场景下的技术突围
数据库·时序数据库
ByteBlossom1 小时前
MySQL 面试场景题之如何处理 BLOB 和CLOB 数据类型?
数据库·mysql·面试
麦兜*1 小时前
MongoDB Atlas 云数据库实战:从零搭建全球多节点集群
java·数据库·spring boot·mongodb·spring·spring cloud
Slaughter信仰1 小时前
深入理解Java虚拟机:JVM高级特性与最佳实践(第3版)第十章知识点问答(10题)
java·jvm·数据库
麦兜*1 小时前
MongoDB 在物联网(IoT)中的应用:海量时序数据处理方案
java·数据库·spring boot·物联网·mongodb·spring
-Xie-2 小时前
Mysql杂志(十六)——缓存池
数据库·mysql·缓存
七夜zippoe2 小时前
缓存与数据库一致性实战手册:从故障修复到架构演进
数据库·缓存·架构
计算机毕业设计木哥2 小时前
计算机毕设选题推荐:基于Java+SpringBoot物品租赁管理系统【源码+文档+调试】
java·vue.js·spring boot·mysql·spark·毕业设计·课程设计
T06205142 小时前
工具变量-5G试点城市DID数据(2014-2025年
大数据