【深耕 Python】Data Science with Python 数据科学(18)Scikit-learn机器学习(三)

写在前面

关于数据科学环境的建立,可以参考我的博客:

【深耕 Python】Data Science with Python 数据科学(1)环境搭建

往期数据科学博文一览:

【深耕 Python】Data Science with Python 数据科学(2)jupyter-lab和numpy数组

【深耕 Python】Data Science with Python 数据科学(3)Numpy 常量、函数和线性空间

【深耕 Python】Data Science with Python 数据科学(4)(书337页)练习题及解答

【深耕 Python】Data Science with Python 数据科学(5)Matplotlib可视化(1)

【深耕 Python】Data Science with Python 数据科学(6)Matplotlib可视化(2)

【深耕 Python】Data Science with Python 数据科学(7)书352页练习题

【深耕 Python】Data Science with Python 数据科学(8)pandas数据结构:Series和DataFrame

【深耕 Python】Data Science with Python 数据科学(9)书361页练习题

【深耕 Python】Data Science with Python 数据科学(10)pandas 数据处理(一)

【深耕 Python】Data Science with Python 数据科学(11)pandas 数据处理(二)

【深耕 Python】Data Science with Python 数据科学(12)pandas 数据处理(三)

【深耕 Python】Data Science with Python 数据科学(13)pandas 数据处理(四):书377页练习题

【深耕 Python】Data Science with Python 数据科学(14)pandas 数据处理(五):泰坦尼克号亡魂 Perished Souls on "RMS Titanic"

【深耕 Python】Data Science with Python 数据科学(15)pandas 数据处理(六):书385页练习题

【深耕 Python】Data Science with Python 数据科学(16)Scikit-learn机器学习(一)

【深耕 Python】Data Science with Python 数据科学(17)Scikit-learn机器学习(二)

代码说明: 由于实机运行的原因,可能省略了某些导入(import)语句。

本期,简单地使用scikit-learn库完成K-Means聚类算法。

一、生成随机数据簇

python 复制代码
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt

X, _ = make_blobs(n_samples=300, centers=4, random_state=42)
fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1])
plt.title("Blob Clusters")
plt.xlabel("X")
plt.ylabel("Y")
plt.grid()
plt.show()

程序输出:

二、在数据集上调用KMeans聚类算法

python 复制代码
from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters=4)
kmeans.fit(X)
centers = kmeans.cluster_centers_
print(centers)

程序输出:

python 复制代码
[[-2.70981136  8.97143336]   # center 1
 [-6.83235205 -6.83045748]   # center 2
 [ 4.7182049   2.04179676]   # center 3
 [-8.87357218  7.17458342]]  # center 4

四、聚类结果可视化

使用matplotlib库将上述的聚类结果可视化:

python 复制代码
fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1])
ax.scatter(centers[:, 0], centers[:, 1], s=200, alpha=0.9, color="orange")
plt.title("Cluster Result Illustration")
plt.xlabel("X")
plt.ylabel("Y")
plt.grid()
plt.show()

程序输出:

参考文献 Reference

《Learn Enough Python to be Dangerous------Software Development, Flask Web Apps, and Beginning Data Science with Python》, Michael Hartl, Boston, Pearson, 2023.

相关推荐
我要学习别拦我~9 分钟前
kaggle分析项目:steam付费游戏数据分析
python·游戏·数据分析
大模型真好玩15 分钟前
深入浅出LangChain AI Agent智能体开发教程(四)—LangChain记忆存储与多轮对话机器人搭建
前端·人工智能·python
love530love17 分钟前
命令行创建 UV 环境及本地化实战演示—— 基于《Python 多版本与开发环境治理架构设计》的最佳实践
开发语言·人工智能·windows·python·conda·uv
陪我一起学编程39 分钟前
MySQL创建普通用户并为其分配相关权限的操作步骤
开发语言·数据库·后端·mysql·oracle
都叫我大帅哥40 分钟前
深度学习的"Hello World":多层感知机全解指南
python·深度学习
麦子邪42 分钟前
C语言中奇技淫巧04-仅对指定函数启用编译优化
linux·c语言·开发语言
都叫我大帅哥1 小时前
LangChain分层记忆解决方案:完整案例
python·langchain
小王子10241 小时前
Django实时通信实战:WebSocket与ASGI全解析(下)
python·websocket·django
破刺不会编程1 小时前
linux线程概念和控制
linux·运维·服务器·开发语言·c++
alex1001 小时前
AI Agent开发学习系列 - langchain之LCEL(5):如何创建一个Agent?
人工智能·python·语言模型·langchain·prompt·向量数据库·ai agent