【深耕 Python】Data Science with Python 数据科学(18)Scikit-learn机器学习(三)

写在前面

关于数据科学环境的建立,可以参考我的博客:

【深耕 Python】Data Science with Python 数据科学(1)环境搭建

往期数据科学博文一览:

【深耕 Python】Data Science with Python 数据科学(2)jupyter-lab和numpy数组

【深耕 Python】Data Science with Python 数据科学(3)Numpy 常量、函数和线性空间

【深耕 Python】Data Science with Python 数据科学(4)(书337页)练习题及解答

【深耕 Python】Data Science with Python 数据科学(5)Matplotlib可视化(1)

【深耕 Python】Data Science with Python 数据科学(6)Matplotlib可视化(2)

【深耕 Python】Data Science with Python 数据科学(7)书352页练习题

【深耕 Python】Data Science with Python 数据科学(8)pandas数据结构:Series和DataFrame

【深耕 Python】Data Science with Python 数据科学(9)书361页练习题

【深耕 Python】Data Science with Python 数据科学(10)pandas 数据处理(一)

【深耕 Python】Data Science with Python 数据科学(11)pandas 数据处理(二)

【深耕 Python】Data Science with Python 数据科学(12)pandas 数据处理(三)

【深耕 Python】Data Science with Python 数据科学(13)pandas 数据处理(四):书377页练习题

【深耕 Python】Data Science with Python 数据科学(14)pandas 数据处理(五):泰坦尼克号亡魂 Perished Souls on "RMS Titanic"

【深耕 Python】Data Science with Python 数据科学(15)pandas 数据处理(六):书385页练习题

【深耕 Python】Data Science with Python 数据科学(16)Scikit-learn机器学习(一)

【深耕 Python】Data Science with Python 数据科学(17)Scikit-learn机器学习(二)

代码说明: 由于实机运行的原因,可能省略了某些导入(import)语句。

本期,简单地使用scikit-learn库完成K-Means聚类算法。

一、生成随机数据簇

python 复制代码
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt

X, _ = make_blobs(n_samples=300, centers=4, random_state=42)
fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1])
plt.title("Blob Clusters")
plt.xlabel("X")
plt.ylabel("Y")
plt.grid()
plt.show()

程序输出:

二、在数据集上调用KMeans聚类算法

python 复制代码
from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters=4)
kmeans.fit(X)
centers = kmeans.cluster_centers_
print(centers)

程序输出:

python 复制代码
[[-2.70981136  8.97143336]   # center 1
 [-6.83235205 -6.83045748]   # center 2
 [ 4.7182049   2.04179676]   # center 3
 [-8.87357218  7.17458342]]  # center 4

四、聚类结果可视化

使用matplotlib库将上述的聚类结果可视化:

python 复制代码
fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1])
ax.scatter(centers[:, 0], centers[:, 1], s=200, alpha=0.9, color="orange")
plt.title("Cluster Result Illustration")
plt.xlabel("X")
plt.ylabel("Y")
plt.grid()
plt.show()

程序输出:

参考文献 Reference

《Learn Enough Python to be Dangerous------Software Development, Flask Web Apps, and Beginning Data Science with Python》, Michael Hartl, Boston, Pearson, 2023.

相关推荐
傻乐u兔7 小时前
C语言进阶————指针4
c语言·开发语言
大模型玩家七七7 小时前
基于语义切分 vs 基于结构切分的实际差异
java·开发语言·数据库·安全·batch
历程里程碑7 小时前
Linux22 文件系统
linux·运维·c语言·开发语言·数据结构·c++·算法
牛奔8 小时前
Go 如何避免频繁抢占?
开发语言·后端·golang
寻星探路12 小时前
【深度长文】万字攻克网络原理:从 HTTP 报文解构到 HTTPS 终极加密逻辑
java·开发语言·网络·python·http·ai·https
lly20240613 小时前
Bootstrap 警告框
开发语言
2601_9491465314 小时前
C语言语音通知接口接入教程:如何使用C语言直接调用语音预警API
c语言·开发语言
曹牧14 小时前
Spring Boot:如何测试Java Controller中的POST请求?
java·开发语言
KYGALYX14 小时前
服务异步通信
开发语言·后端·微服务·ruby
AI_567814 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws