【深耕 Python】Data Science with Python 数据科学(18)Scikit-learn机器学习(三)

写在前面

关于数据科学环境的建立,可以参考我的博客:

【深耕 Python】Data Science with Python 数据科学(1)环境搭建

往期数据科学博文一览:

【深耕 Python】Data Science with Python 数据科学(2)jupyter-lab和numpy数组

【深耕 Python】Data Science with Python 数据科学(3)Numpy 常量、函数和线性空间

【深耕 Python】Data Science with Python 数据科学(4)(书337页)练习题及解答

【深耕 Python】Data Science with Python 数据科学(5)Matplotlib可视化(1)

【深耕 Python】Data Science with Python 数据科学(6)Matplotlib可视化(2)

【深耕 Python】Data Science with Python 数据科学(7)书352页练习题

【深耕 Python】Data Science with Python 数据科学(8)pandas数据结构:Series和DataFrame

【深耕 Python】Data Science with Python 数据科学(9)书361页练习题

【深耕 Python】Data Science with Python 数据科学(10)pandas 数据处理(一)

【深耕 Python】Data Science with Python 数据科学(11)pandas 数据处理(二)

【深耕 Python】Data Science with Python 数据科学(12)pandas 数据处理(三)

【深耕 Python】Data Science with Python 数据科学(13)pandas 数据处理(四):书377页练习题

【深耕 Python】Data Science with Python 数据科学(14)pandas 数据处理(五):泰坦尼克号亡魂 Perished Souls on "RMS Titanic"

【深耕 Python】Data Science with Python 数据科学(15)pandas 数据处理(六):书385页练习题

【深耕 Python】Data Science with Python 数据科学(16)Scikit-learn机器学习(一)

【深耕 Python】Data Science with Python 数据科学(17)Scikit-learn机器学习(二)

代码说明: 由于实机运行的原因,可能省略了某些导入(import)语句。

本期,简单地使用scikit-learn库完成K-Means聚类算法。

一、生成随机数据簇

python 复制代码
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt

X, _ = make_blobs(n_samples=300, centers=4, random_state=42)
fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1])
plt.title("Blob Clusters")
plt.xlabel("X")
plt.ylabel("Y")
plt.grid()
plt.show()

程序输出:

二、在数据集上调用KMeans聚类算法

python 复制代码
from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters=4)
kmeans.fit(X)
centers = kmeans.cluster_centers_
print(centers)

程序输出:

python 复制代码
[[-2.70981136  8.97143336]   # center 1
 [-6.83235205 -6.83045748]   # center 2
 [ 4.7182049   2.04179676]   # center 3
 [-8.87357218  7.17458342]]  # center 4

四、聚类结果可视化

使用matplotlib库将上述的聚类结果可视化:

python 复制代码
fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1])
ax.scatter(centers[:, 0], centers[:, 1], s=200, alpha=0.9, color="orange")
plt.title("Cluster Result Illustration")
plt.xlabel("X")
plt.ylabel("Y")
plt.grid()
plt.show()

程序输出:

参考文献 Reference

《Learn Enough Python to be Dangerous------Software Development, Flask Web Apps, and Beginning Data Science with Python》, Michael Hartl, Boston, Pearson, 2023.

相关推荐
数据智能老司机6 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
数据智能老司机7 小时前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机7 小时前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机7 小时前
精通 Python 设计模式——性能模式
python·设计模式·架构
c8i7 小时前
drf初步梳理
python·django
每日AI新事件7 小时前
python的异步函数
python
这里有鱼汤8 小时前
miniQMT下载历史行情数据太慢怎么办?一招提速10倍!
前端·python
databook17 小时前
Manim实现脉冲闪烁特效
后端·python·动效
程序设计实验室18 小时前
2025年了,在 Django 之外,Python Web 框架还能怎么选?
python
倔强青铜三19 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试