【深耕 Python】Data Science with Python 数据科学(18)Scikit-learn机器学习(三)

写在前面

关于数据科学环境的建立,可以参考我的博客:

【深耕 Python】Data Science with Python 数据科学(1)环境搭建

往期数据科学博文一览:

【深耕 Python】Data Science with Python 数据科学(2)jupyter-lab和numpy数组

【深耕 Python】Data Science with Python 数据科学(3)Numpy 常量、函数和线性空间

【深耕 Python】Data Science with Python 数据科学(4)(书337页)练习题及解答

【深耕 Python】Data Science with Python 数据科学(5)Matplotlib可视化(1)

【深耕 Python】Data Science with Python 数据科学(6)Matplotlib可视化(2)

【深耕 Python】Data Science with Python 数据科学(7)书352页练习题

【深耕 Python】Data Science with Python 数据科学(8)pandas数据结构:Series和DataFrame

【深耕 Python】Data Science with Python 数据科学(9)书361页练习题

【深耕 Python】Data Science with Python 数据科学(10)pandas 数据处理(一)

【深耕 Python】Data Science with Python 数据科学(11)pandas 数据处理(二)

【深耕 Python】Data Science with Python 数据科学(12)pandas 数据处理(三)

【深耕 Python】Data Science with Python 数据科学(13)pandas 数据处理(四):书377页练习题

【深耕 Python】Data Science with Python 数据科学(14)pandas 数据处理(五):泰坦尼克号亡魂 Perished Souls on "RMS Titanic"

【深耕 Python】Data Science with Python 数据科学(15)pandas 数据处理(六):书385页练习题

【深耕 Python】Data Science with Python 数据科学(16)Scikit-learn机器学习(一)

【深耕 Python】Data Science with Python 数据科学(17)Scikit-learn机器学习(二)

代码说明: 由于实机运行的原因,可能省略了某些导入(import)语句。

本期,简单地使用scikit-learn库完成K-Means聚类算法。

一、生成随机数据簇

python 复制代码
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt

X, _ = make_blobs(n_samples=300, centers=4, random_state=42)
fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1])
plt.title("Blob Clusters")
plt.xlabel("X")
plt.ylabel("Y")
plt.grid()
plt.show()

程序输出:

二、在数据集上调用KMeans聚类算法

python 复制代码
from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters=4)
kmeans.fit(X)
centers = kmeans.cluster_centers_
print(centers)

程序输出:

python 复制代码
[[-2.70981136  8.97143336]   # center 1
 [-6.83235205 -6.83045748]   # center 2
 [ 4.7182049   2.04179676]   # center 3
 [-8.87357218  7.17458342]]  # center 4

四、聚类结果可视化

使用matplotlib库将上述的聚类结果可视化:

python 复制代码
fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1])
ax.scatter(centers[:, 0], centers[:, 1], s=200, alpha=0.9, color="orange")
plt.title("Cluster Result Illustration")
plt.xlabel("X")
plt.ylabel("Y")
plt.grid()
plt.show()

程序输出:

参考文献 Reference

《Learn Enough Python to be Dangerous------Software Development, Flask Web Apps, and Beginning Data Science with Python》, Michael Hartl, Boston, Pearson, 2023.

相关推荐
呵呵哒( ̄▽ ̄)"12 分钟前
线性代数:分块矩阵,秩,齐次线性,非齐次线性的解相关经典例题
线性代数·机器学习·矩阵
无名之逆14 分钟前
[特殊字符] Hyperlane 框架:高性能、灵活、易用的 Rust 微服务解决方案
运维·服务器·开发语言·数据库·后端·微服务·rust
五指山西23 分钟前
异步框架使用loguru和contextvars实现日志按Id输出
python
小宁爱Python24 分钟前
Python从入门到精通4:计算机网络及TCP网络应用程序开发入门指南
网络·python·tcp/ip·计算机网络
Vitalia28 分钟前
⭐算法OJ⭐寻找最短超串【动态规划 + 状态压缩】(C++ 实现)Find the Shortest Superstring
开发语言·c++·算法·动态规划·动态压缩
thinkMoreAndDoMore31 分钟前
深度学习处理文本(5)
人工智能·python·深度学习
最后一个bug38 分钟前
PCI与PCIe接口的通信架构是主从模式吗?
linux·开发语言·arm开发·stm32·嵌入式硬件
落落鱼201339 分钟前
TP6图片操作 Image::open 调用->save()方法时候报错Type is not supported
开发语言
Niuguangshuo41 分钟前
Python 设计模式:外观模式
python·设计模式·外观模式
慕离桑1 小时前
SQL语言的物联网
开发语言·后端·golang