Pytorch迁移学习训练病变分类模型

划分数据集

1.创建训练集文件夹和测试集文件夹

python 复制代码
# 创建 train 文件夹
os.mkdir(os.path.join(dataset_path, 'train'))

# 创建 test 文件夹
os.mkdir(os.path.join(dataset_path, 'val'))

# 在 train 和 test 文件夹中创建各类别子文件夹
for Retinopathy in classes:
    os.mkdir(os.path.join(dataset_path, 'train', Retinopathy))
    os.mkdir(os.path.join(dataset_path, 'val', Retinopathy))

2.划分训练集、测试集,移动文件

python 复制代码
test_frac = 0.2  # 测试集比例
random.seed(123) # 随机数种子,用来打乱数据集

df = pd.DataFrame()

print('{:^18} {:^18} {:^18}'.format('类别', '训练集数据个数', '测试集数据个数'))

for Retinopathy in classes: # 遍历每个类别

    # 读取该类别的所有图像文件名
    old_dir = os.path.join(dataset_path, Retinopathy)
    images_filename = os.listdir(old_dir)
    random.shuffle(images_filename) # 随机打乱

    # 划分训练集和测试集
    testset_numer = int(len(images_filename) * test_frac) # 测试集图像个数
    testset_images = images_filename[:testset_numer]      # 获取拟移动至 test 目录的测试集图像文件名
    trainset_images = images_filename[testset_numer:]     # 获取拟移动至 train 目录的训练集图像文件名

    # 移动图像至 test 目录
    for image in testset_images:
        old_img_path = os.path.join(dataset_path, Retinopathy, image)         # 获取原始文件路径
        new_test_path = os.path.join(dataset_path, 'val', Retinopathy, image) # 获取 test 目录的新文件路径
        shutil.move(old_img_path, new_test_path) # 移动文件

    # 移动图像至 train 目录
    for image in trainset_images:
        old_img_path = os.path.join(dataset_path, Retinopathy, image)           # 获取原始文件路径
        new_train_path = os.path.join(dataset_path, 'train', Retinopathy, image) # 获取 train 目录的新文件路径
        shutil.move(old_img_path, new_train_path) # 移动文件
    
    # 删除旧文件夹
    assert len(os.listdir(old_dir)) == 0 # 确保旧文件夹中的所有图像都被移动走
    shutil.rmtree(old_dir) # 删除文件夹
    
    # 工整地输出每一类别的数据个数
    print('{:^18} {:^18} {:^18}'.format(Retinopathy, len(trainset_images), len(testset_images)))
    
    # 保存到表格中
    df = df.append({'class':Retinopathy, 'trainset':len(trainset_images), 'testset':len(testset_images)}, ignore_index=True)

# 重命名数据集文件夹
shutil.move(dataset_path, dataset_name+'_split')

# 数据集各类别数量统计表格,导出为 csv 文件
df['total'] = df['trainset'] + df['testset']
df.to_csv('数据量统计.csv', index=False)

结果如下:

统计各类别数据个数柱状图

1.导入工具包

python 复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

2.设置matplotlib的中文字体,因为它默认无法写中文字体

python 复制代码
plt.rcParams['font.sans-serif']=['SimHei']  # 用来正常显示中文标签 
plt.rcParams['axes.unicode_minus']=False  # 用来正常显示负号

3.指定可视化的特征

python 复制代码
feature = 'total'
# feature = 'trainset'
# feature = 'testset'

df = df.sort_values(by=feature, ascending=False)

4.通过柱状图展示出来

python 复制代码
plt.figure(figsize=(22, 7))

x = df['class']
y = df[feature]

plt.bar(x, y, facecolor='#1f77b4', edgecolor='k')

plt.xticks(rotation=90)
plt.tick_params(labelsize=15)
plt.xlabel('类别', fontsize=20)
plt.ylabel('图像数量', fontsize=20)

# plt.savefig('各类别图片数量.pdf', dpi=120, bbox_inches='tight')

plt.show()

结果如下:

由此可见,数据集是比较均衡的。

5.将训练集与测试集的比例展示出来

python 复制代码
plt.figure(figsize=(22, 7))
x = df['class']
y1 = df['testset']
y2 = df['trainset']

width = 0.55 # 柱状图宽度

plt.xticks(rotation=90) # 横轴文字旋转

plt.bar(x, y1, width, label='测试集')
plt.bar(x, y2, width, label='训练集', bottom=y1)


plt.xlabel('类别', fontsize=20)
plt.ylabel('图像数量', fontsize=20)
plt.tick_params(labelsize=13) # 设置坐标文字大小

plt.legend(fontsize=16) # 图例

# 保存为高清的 pdf 文件
plt.savefig('各类别图像数量.pdf', dpi=120, bbox_inches='tight')

plt.show()

结果如下:

处理完数据集后,就可以开始通过迁移学习训练病变分类模型。

安装配置环境

1.numpy、pandas、matplotlib、seaborn、plotly、requests、tqdm、opencv-python、pillow、wandb和pytorch均已安装完成

2.创建三个文件夹

python 复制代码
import os

# 存放结果文件
os.mkdir('output')

# 存放训练得到的模型权重
os.mkdir('checkpoint')

# 存放生成的图表
os.mkdir('图表')

迁移学习训练过程与前处理

1.导入包

python 复制代码
import time
import os

import numpy as np
from tqdm import tqdm

import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F

import matplotlib.pyplot as plt
%matplotlib inline

import warnings
warnings.filterwarnings("ignore")

2.获取计算机的硬件,使用CPU还是GPU

python 复制代码
# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('device', device)

3.图像预处理

python 复制代码
from torchvision import transforms

# 训练集图像预处理:缩放裁剪、图像增强、转 Tensor、归一化
train_transform = transforms.Compose([transforms.RandomResizedCrop(224),
                                      transforms.RandomHorizontalFlip(),
                                      transforms.ToTensor(),
                                      transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
                                     ])

# 测试集图像预处理:缩放、裁剪、转 Tensor、归一化
test_transform = transforms.Compose([transforms.Resize(256),
                                     transforms.CenterCrop(224),
                                     transforms.ToTensor(),
                                     transforms.Normalize(
                                         mean=[0.485, 0.456, 0.406], 
                                         std=[0.229, 0.224, 0.225])
                                    ])

对训练集和测试集分别进行预处理。

训练集的预处理中,RandomResizedCrop(224)表示随机选择一个面积比例,并在该比例下随机裁剪图像,然后将裁剪后的图像缩放到指定的尺寸,参数 224 指定了裁剪并缩放后的图像尺寸应该是 224x224 像素。RandomHorizontalFlip()是进行随机的水平翻转,目的是图像增强。最后转成pytorch的tensor格式进行归一化。归一化的6个参数约定俗成。

4.载入图像分类数据集

python 复制代码
from torchvision import datasets

# 数据集文件夹路径
dataset_dir = 'E:\科研实验\Train_Custom_Dataset-main\图像分类\dataset_split'

train_path = os.path.join(dataset_dir, 'train')
test_path = os.path.join(dataset_dir, 'val')

# 载入训练集
train_dataset = datasets.ImageFolder(train_path, train_transform)

# 载入测试集
test_dataset = datasets.ImageFolder(test_path, test_transform)

结果如下:

5.类别和索引号一一对应,方便后续的查询

python 复制代码
# 映射关系:索引号 到 类别
idx_to_labels = {y:x for x,y in train_dataset.class_to_idx.items()}

# 保存为本地的 npy 文件
np.save('idx_to_labels.npy', idx_to_labels)
np.save('labels_to_idx.npy', train_dataset.class_to_idx)

6.定义数据加载器DataLoader

python 复制代码
from torch.utils.data import DataLoader

BATCH_SIZE = 32

# 训练集的数据加载器
train_loader = DataLoader(train_dataset,
                          batch_size=BATCH_SIZE,
                          shuffle=True,
                          num_workers=4
                         )

# 测试集的数据加载器
test_loader = DataLoader(test_dataset,
                         batch_size=BATCH_SIZE,
                         shuffle=False,
                         num_workers=4
                        )

7.可视化一个batch的图像和标注

python 复制代码
# 将数据集中的Tensor张量转为numpy的array数据类型
images = images.numpy()

举个例子,images[5].shape展示的是一个批次中第五张图片的信息,结果如下:

images[5]的像素分布如下所示:

显示上图所用代码为:

python 复制代码
plt.hist(images[5].flatten(), bins=50)
plt.show()

之前通过预处理归一化,已经将每一个像素都减去它所在通道的均值,再除以它所在通道的标准差了,所以现在的像素不再分布在0~255的整数范围内,而是一个以0为均值的,有正有负的分布。这样的分布更容易被神经网络处理,正如上图所示。

归一化后的图像如下所示:

显示上图所用代码为:

python 复制代码
# batch 中经过预处理的图像
idx = 5
plt.imshow(images[idx].transpose((1,2,0))) # 转为(224, 224, 3)
plt.title('label:'+str(labels[idx].item()))

此图的原图像为:

显示上图所用代码为:

python 复制代码
# 原始图像
idx = 5
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
plt.imshow(np.clip(images[idx].transpose((1,2,0)) * std + mean, 0, 1))
plt.title('label:'+ pred_classname)
plt.show()

8.选择迁移学习训练的方式

视网膜图像和ImageNet的分布不是很一致,所以这里采用**"微调训练所有层"**的方式

①调整训练所有层

python 复制代码
model = model.to(device)

# 交叉熵损失函数
criterion = nn.CrossEntropyLoss() 

# 训练轮次 Epoch
EPOCHS = 30

# 学习率降低策略
lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.5)

②函数:在训练集上训练

python 复制代码
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.metrics import roc_auc_score

def train_one_batch(images, labels):
    '''
    运行一个 batch 的训练,返回当前 batch 的训练日志
    '''
    
    # 获得一个 batch 的数据和标注
    images = images.to(device)
    labels = labels.to(device)
    
    outputs = model(images) # 输入模型,执行前向预测
    loss = criterion(outputs, labels) # 计算当前 batch 中,每个样本的平均交叉熵损失函数值
    
    # 优化更新权重
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    
    # 获取当前 batch 的标签类别和预测类别
    _, preds = torch.max(outputs, 1) # 获得当前 batch 所有图像的预测类别
    preds = preds.cpu().numpy()
    loss = loss.detach().cpu().numpy()
    outputs = outputs.detach().cpu().numpy()
    labels = labels.detach().cpu().numpy()
    
    log_train = {}
    log_train['epoch'] = epoch
    log_train['batch'] = batch_idx
    # 计算分类评估指标
    log_train['train_loss'] = loss
    log_train['train_accuracy'] = accuracy_score(labels, preds)
    # log_train['train_precision'] = precision_score(labels, preds, average='macro')
    # log_train['train_recall'] = recall_score(labels, preds, average='macro')
    # log_train['train_f1-score'] = f1_score(labels, preds, average='macro')
    
    return log_train

返回的log_train是训练日志

③函数:在整个测试集上评估

python 复制代码
def evaluate_testset():
    '''
    在整个测试集上评估,返回分类评估指标日志
    '''

    loss_list = []
    labels_list = []
    preds_list = []
    
    with torch.no_grad():
        for images, labels in test_loader: # 生成一个 batch 的数据和标注
            images = images.to(device)
            labels = labels.to(device)
            outputs = model(images) # 输入模型,执行前向预测

            # 获取整个测试集的标签类别和预测类别
            _, preds = torch.max(outputs, 1) # 获得当前 batch 所有图像的预测类别
            preds = preds.cpu().numpy()
            loss = criterion(outputs, labels) # 由 logit,计算当前 batch 中,每个样本的平均交叉熵损失函数值
            loss = loss.detach().cpu().numpy()
            outputs = outputs.detach().cpu().numpy()
            labels = labels.detach().cpu().numpy()

            loss_list.append(loss)
            labels_list.extend(labels)
            preds_list.extend(preds)
        
    log_test = {}
    log_test['epoch'] = epoch
    
    # 计算分类评估指标
    log_test['test_loss'] = np.mean(loss_list)
    log_test['test_accuracy'] = accuracy_score(labels_list, preds_list)
    log_test['test_precision'] = precision_score(labels_list, preds_list, average='macro')
    log_test['test_recall'] = recall_score(labels_list, preds_list, average='macro')
    log_test['test_f1-score'] = f1_score(labels_list, preds_list, average='macro')
    
    return log_test

返回的log_test是测试日志

④登录wandb(可在网页、手机、iPad上实时监控日志)

安装 wandb:pip install wandb

登录 wandb:在命令行中运行wandb login

按提示复制粘贴API Key至命令行中

⑤创建wandb可视化项目

python 复制代码
import wandb

wandb.init(project='视网膜病变', name=time.strftime('%m%d%H%M%S'))

⑥运行训练

python 复制代码
for epoch in range(1, EPOCHS+1):
    
    print(f'Epoch {epoch}/{EPOCHS}')
    
    ## 训练阶段
    model.train()
    for images, labels in tqdm(train_loader): # 获得一个 batch 的数据和标注
        batch_idx += 1
        log_train = train_one_batch(images, labels)
        df_train_log = df_train_log.append(log_train, ignore_index=True)
        wandb.log(log_train)
        
    lr_scheduler.step()

    ## 测试阶段
    model.eval()
    log_test = evaluate_testset()
    df_test_log = df_test_log.append(log_test, ignore_index=True)
    wandb.log(log_test)
    
    # 保存最新的最佳模型文件
    if log_test['test_accuracy'] > best_test_accuracy: 
        # 删除旧的最佳模型文件(如有)
        old_best_checkpoint_path = 'checkpoint/best-{:.3f}.pth'.format(best_test_accuracy)
        if os.path.exists(old_best_checkpoint_path):
            os.remove(old_best_checkpoint_path)
        # 保存新的最佳模型文件
        best_test_accuracy = log_test['test_accuracy']
        new_best_checkpoint_path = 'checkpoint/best-{:.3f}.pth'.format(log_test['test_accuracy'])
        torch.save(model, new_best_checkpoint_path)
        print('保存新的最佳模型', 'checkpoint/best-{:.3f}.pth'.format(best_test_accuracy))
        # best_test_accuracy = log_test['test_accuracy']

df_train_log.to_csv('训练日志-训练集.csv', index=False)
df_test_log.to_csv('训练日志-测试集.csv', index=False)

wandb的监控结果如下所示:

相关推荐
YRr YRr15 分钟前
如何使用 PyTorch 实现图像分类数据集的加载和处理
pytorch·深度学习·分类
z千鑫15 小时前
【人工智能】PyTorch、TensorFlow 和 Keras 全面解析与对比:深度学习框架的终极指南
人工智能·pytorch·深度学习·aigc·tensorflow·keras·codemoss
学不会lostfound17 小时前
三、计算机视觉_05MTCNN人脸检测
pytorch·深度学习·计算机视觉·mtcnn·p-net·r-net·o-net
爱喝白开水a17 小时前
Sentence-BERT实现文本匹配【分类目标函数】
人工智能·深度学习·机器学习·自然语言处理·分类·bert·大模型微调
Mr.谢尔比18 小时前
李宏毅机器学习课程知识点摘要(1-5集)
人工智能·pytorch·深度学习·神经网络·算法·机器学习·计算机视觉
做程序员的第一天19 小时前
在PyTorch中,钩子(hook)是什么?在神经网络中扮演什么角色?
pytorch·python·深度学习
Nerinic19 小时前
PyTorch基础2
pytorch·python
曼城周杰伦20 小时前
自然语言处理:第六十二章 KAG 超越GraphRAG的图谱框架
人工智能·pytorch·神经网络·自然语言处理·chatgpt·nlp·gpt-3
Joyner201820 小时前
pytorch训练的双卡,一个显卡占有20GB,另一个卡占有8GB,怎么均衡?
人工智能·pytorch·python
AI视觉网奇20 小时前
pytorch3d linux安装
linux·人工智能·pytorch