基于迁移学习的语义句子分类器(微调一个预训练模型的案例,即迁移学习)

一、任务:基于迁移学习的语义句子分类器

项目介绍:本任务的目的是利用预训练好的模型来微调自己的微软研究释义语料库数据集,实现文本分类的任务,具体是判断两个句子的意思是否相同。在微调阶段,我们将整个模型的参数都参与训练,以便模型能够从新的数据集中学习到适合特定任务的特征表示。任务中使用的是bert-base-uncased预训练模型,实现了加载预训练模型并在 MRPC 任务上进行微调的过程,以便模型能够学习到 MRPC 数据集中的文本语义,并用于句子对分类任务。

Hugging Face主页课程第三篇《Fine-tuning a pretrained model》-CSDN博客

项目原文链接如上所示,包括代码和代码解释。

本人项目链接:https://colab.research.google.com/drive/1ZZ_UakS1XRkE9RSyVbMsvSnrXgGzF_s5#scrollTo=yokh8o7Z3T66

二、Accelerate和torch中的dataparallel对比

torch.nn.DataParallelaccelerate 是用于在 PyTorch 中进行分布式训练的两种不同方法,它们之间有一些区别:

  1. 实现方式:

    • torch.nn.DataParallel 是 PyTorch 提供的官方模块,用于在单台机器的多个 GPU 上进行训练。它通过将模型复制到每个 GPU 上,并在每个 GPU 上计算前向传播和反向传播,然后在梯度计算时将梯度汇总并同步到主 GPU 上,从而实现了数据并行。
    • accelerate 是 Hugging Face 提供的用于在 PyTorch 和 TensorFlow 中进行分布式训练的库。它提供了一种更加简洁和易用的接口,支持在多个 GPU 或 TPU 上进行训练,并且提供了更多的分布式训练的功能和选项。
  2. 使用方式:

    • 使用 torch.nn.DataParallel 时,您需要手动将模型包装在 DataParallel 模块中,并在传递给优化器之前将模型移动到 GPU 上。
    • 使用 accelerate 时,您只需要使用 accelerate 库中提供的 accelerator 对象,它会自动处理所有的分布式训练逻辑,包括模型和数据的分布式处理、优化器的设置和调度器的配置等。
  3. 功能和性能:

    • accelerate 提供了更多的分布式训练的功能和选项,例如对训练循环的简化、对训练和验证的自动化、对性能的优化等。
    • accelerate 也针对性能进行了优化,尤其是在多 GPU 或 TPU 上进行训练时,它可以更好地利用硬件资源并提高训练速度。

综上所述,accelerate 提供了更加简洁、易用和高效的分布式训练解决方案,特别适用于在 PyTorch 和 TensorFlow 中进行大规模分布式训练的场景。

总结:

  • 使用 Accelerate库 适用于多个 GPU 或 TPU,并且适用于PyTorch 和 TensorFlow ,还对性能做了优化。而torch.nn.DataParallel只适用于pytorch。同等情况下优先使用Accelerate库。

三、迁移学习和微调的概念

  • 迁移学习(Transfer Learning): 迁移学习是指将一个模型在一个任务上学到的知识或表示应用到另一个相关任务上的过程。在迁移学习中,通常会使用一个已经在大规模数据集上预训练好的模型(称为预训练模型),然后将这个模型迁移到新的任务或数据集上,并在新数据集上进行微调,从而适应新的任务或数据集。迁移学习的目标是利用已有的知识和表示,加速新任务的学习过程,并提高模型的性能和泛化能力。

  • 微调(Fine-tuning): 微调是迁移学习中的一个具体步骤,指的是在新的任务或数据集上对预训练模型进行进一步的训练。在微调过程中,通常会解冻预训练模型的部分或全部参数,并在新数据集上进行训练,以调整模型的参数,使其适应新的任务或数据集。微调可以包括调整模型的各个方面,例如学习率、优化器、训练周期等,以达到最佳的性能。

相关推荐
「、皓子~7 分钟前
后台管理系统的诞生 - 利用AI 1天完成整个后台管理系统的微服务后端+前端
前端·人工智能·微服务·小程序·go·ai编程·ai写作
笑衬人心。41 分钟前
初学Spring AI 笔记
人工智能·笔记·spring
luofeiju1 小时前
RGB下的色彩变换:用线性代数解构色彩世界
图像处理·人工智能·opencv·线性代数
测试者家园1 小时前
基于DeepSeek和crewAI构建测试用例脚本生成器
人工智能·python·测试用例·智能体·智能化测试·crewai
张较瘦_1 小时前
[论文阅读] 人工智能 + 软件工程 | Call Me Maybe:用图神经网络增强JavaScript调用图构建
论文阅读·人工智能·软件工程
大模型真好玩1 小时前
准确率飙升!Graph RAG如何利用知识图谱提升RAG答案质量(四)——微软GraphRAG代码实战
人工智能·python·mcp
Baihai_IDP1 小时前
vec2text 技术已开源!一定条件下,文本嵌入向量可“近乎完美地”还原
人工智能·面试·llm
江太翁1 小时前
Pytorch torch
人工智能·pytorch·python
拓端研究室2 小时前
专题:2025即时零售与各类人群消费行为洞察报告|附400+份报告PDF、原数据表汇总下载
大数据·人工智能
网安INF2 小时前
深度学习中的逻辑回归:从原理到Python实现
人工智能·python·深度学习·算法·逻辑回归