kubectl_入门_service详解

Service

我们知道 Pod 的生命周期是有限的。可以用 ReplicaSet 和Deployment 来动态的创建和销毁 Pod,每个 Pod 都有自己的 IP 地址,但是如果 Pod 重建了的话那么他的 IP 很有可能也就变化了。

这就会带来一个问题:比如我们有一些后端的 Pod 集合为集群中的其他应用提供 API 服务,如果我们在前端应用中把所有的这些后端的 Pod 的地址都写死,然后以某种方式去访问其中一个 Pod 的服务,这样看上去是可以工作的,但是如果这个 Pod 挂掉了,然后重新启动起来了,是不是 IP 地址非常有可能就变了,这个时候前端就极大可能访问不到后端的服务了。

为解决这个问题 Kubernetes 就为我们提供Service对象,Service 是一种抽象的对象,它定义了一组 Pod 的逻辑集合和一个用于访问它们的策略,其实这个概念和微服务非常类似。一个 Serivce 下面包含的 Pod 集合是由 Label Selector 来决定的。

1. kube-proxy

service在很多情况下只是一个概念,真正起作用的其实是kube-proxy服务进程,每个node节点上都运行一个kube-proxy服务进程,当创建service的时候会通过api-server向etcd写入创建的service信息,而kube-proxy会基于监听的机制发现这种service的变动,然后它会将最新的service信息转换成对应的访问规则

kube-proxy目前支持三种工作模式:

  • userspace模式
  • iptables模式
  • ipvs模式

1.1 userspace模式

userspace模式下,kube-proxy为service后端的每个service创建一个监听端口,发向cluster ip的请求被iptables规则重定向到kube-proxy监听的端口上,kube-proxy根据LB算法选择一个提供服务的pod并和其建立连接,以将请求转发到pod上。

该模式下,kube-proxy充当了一个四层负载均衡器的角色,由于kube-proxy运行在userspace中,在进行转发处理时会增加内核和用户空间之间的数据拷贝,虽然比较稳定,但是效率比较低。

1.2 iptables模式

iptables模式下,kube-proxy为service后端的每个pod创建对应的iptables规则,直接将发向cluster ip的请求重定向到一个pod ip。

该模式下kube-proxy不承担四层负载均衡器的角色,只负责创建iptables规则。该模式的优点是较userspace模式效率更高,但不能提供灵活的LB策略,当后端pod不可用时也无法进行重试

1.3 ipvs模式

ipvs模式和iptables类似,kube-proxy监控pod的变化并创建相应的ipvs规则,ipvs相对iptables转发效率更高。除此以外,ipvs支持更多的LB算法。

此模式必须安装ipvs内核模块,否则会降级为iptables。

  • 安装ipset和ipvsadm

    shell 复制代码
    [root@master ~]# yum install ipset ipvsadm -y
  • 写入脚本文件

    shell 复制代码
    [root@master ~]# cat <<EOF> /etc/sysconfig/modules/ipvs.modules
    > #!/bin/bash
    modprobe -- ip_vs
    modprobe -- ip_vs_rr
    modprobe -- ip_vs_wrr
    modprobe -- ip_vs_sh
    modprobe -- nf_conntrack_ipv4
    EOF
  • 执行

    shell 复制代码
    [root@master ~]# chmod +x /etc/sysconfig/modules/ipvs.modules 
    #执行脚本文件
    [root@master ~]# /bin/bash /etc/sysconfig/modules/ipvs.modules

    查看对应的模块是否加载成功

    shell 复制代码
    [root@master ~]# lsmod |grep -e ip_vs -e nf_conntrack_ipv4
    ip_vs_sh               12688  0 
    ip_vs_wrr              12697  0 
    ip_vs_rr               12600  0 
    ip_vs                 145497  6 ip_vs_rr,ip_vs_sh,ip_vs_wrr
    nf_conntrack_ipv4      15053  15 
    nf_defrag_ipv4         12729  1 nf_conntrack_ipv4
    nf_conntrack          139264  10 ip_vs,nf_nat,nf_nat_ipv4,nf_nat_ipv6,xt_conntrack,nf_nat_masquerade_ipv4,nf_nat_masquerade_ipv6,nf_conntrack_netlink,nf_conntrack_ipv4,nf_conntrack_ipv6
    libcrc32c              12644  4 xfs,ip_vs,nf_nat,nf_conntrack

    重启系统。

  • 开启ipvs

    shell 复制代码
    [root@master ~]# kubectl edit cm kube-proxy -n kube-system

    将mode改为ipvs

    删除kube-proxy的pod并重建

    shell 复制代码
    [root@master ~]# kubectl delete pod -l k8s-app=kube-proxy -n kube-system
    pod "kube-proxy-lwls6" deleted
    pod "kube-proxy-scwzg" deleted
    pod "kube-proxy-sn9kc" deleted

    查看ipvs,发现产生了一批规则

    shell 复制代码
    [root@master ~]# ipvsadm -Ln
    IP Virtual Server version 1.2.1 (size=4096)
    Prot LocalAddress:Port Scheduler Flags
      -> RemoteAddress:Port           Forward Weight ActiveConn InActConn
    TCP  172.17.0.1:30002 rr
      -> 10.244.1.95:80               Masq    1      0          0         
      -> 10.244.1.97:80               Masq    1      0          0         
      -> 10.244.2.41:80               Masq    1      0          0         
    TCP  172.17.0.1:32000 rr
      -> 10.244.0.15:8443             Masq    1      0          0         
    TCP  172.18.0.1:30002 rr
      -> 10.244.1.95:80               Masq    1      0          0         
      -> 10.244.1.97:80               Masq    1      0          0         
      -> 10.244.2.41:80               Masq    1      0          0         
    TCP  172.18.0.1:32000 rr
      -> 10.244.0.15:8443             Masq    1      0          0         
    TCP  172.19.0.1:30002 rr
      -> 10.244.1.95:80               Masq    1      0          0         
      -> 10.244.1.97:80               Masq    1      0          0         
      -> 10.244.2.41:80               Masq    1      0          0         
    TCP  172.19.0.1:32000 rr
      -> 10.244.0.15:8443             Masq    1      0          0         
    TCP  172.21.0.1:30002 rr
      -> 10.244.1.95:80               Masq    1      0          0         
      -> 10.244.1.97:80               Masq    1      0          0         
      -> 10.244.2.41:80               Masq    1      0          0         
    TCP  172.21.0.1:32000 rr
      -> 10.244.0.15:8443             Masq    1      0          0         
    TCP  172.22.0.1:30002 rr
      -> 10.244.1.95:80               Masq    1      0          0         
      -> 10.244.1.97:80               Masq    1      0          0         
      -> 10.244.2.41:80               Masq    1      0          0         
    TCP  172.22.0.1:32000 rr
      -> 10.244.0.15:8443             Masq    1      0          0         
    TCP  172.24.0.1:30002 rr
      -> 10.244.1.95:80               Masq    1      0          0         
      -> 10.244.1.97:80               Masq    1      0          0         
      -> 10.244.2.41:80               Masq    1      0          0         
    TCP  172.24.0.1:32000 rr
      -> 10.244.0.15:8443             Masq    1      0          0         
    TCP  172.25.0.1:30002 rr
      -> 10.244.1.95:80               Masq    1      0          0         
      -> 10.244.1.97:80               Masq    1      0          0         
      -> 10.244.2.41:80               Masq    1      0          0         
    TCP  172.25.0.1:32000 rr
      -> 10.244.0.15:8443             Masq    1      0          0         
    TCP  192.168.200.101:30002 rr
      -> 10.244.1.95:80               Masq    1      0          0         
      -> 10.244.1.97:80               Masq    1      0          0         
      -> 10.244.2.41:80               Masq    1      0          0         
    TCP  192.168.200.101:32000 rr
      -> 10.244.0.15:8443             Masq    1      0          0         
    TCP  10.96.0.1:443 rr
      -> 192.168.200.101:6443         Masq    1      0          0         
    TCP  10.96.0.10:53 rr
      -> 10.244.0.14:53               Masq    1      0          0         
      -> 10.244.0.16:53               Masq    1      0          0         
    TCP  10.96.0.10:9153 rr
      -> 10.244.0.14:9153             Masq    1      0          0         
      -> 10.244.0.16:9153             Masq    1      0          0         
    TCP  10.96.34.175:443 rr
      -> 10.244.0.15:8443             Masq    1      0          0         
    TCP  10.96.106.156:8000 rr
      -> 10.244.0.13:8000             Masq    1      0          0         
    TCP  10.96.127.29:443 rr
      -> 10.244.2.40:4443             Masq    1      0          0         
    TCP  10.96.253.220:80 rr
      -> 10.244.1.95:80               Masq    1      0          0         
      -> 10.244.1.97:80               Masq    1      0          0         
      -> 10.244.2.41:80               Masq    1      0          0         
    TCP  10.244.0.0:30002 rr
      -> 10.244.1.95:80               Masq    1      0          0         
      -> 10.244.1.97:80               Masq    1      0          0         
      -> 10.244.2.41:80               Masq    1      0          0         
    TCP  10.244.0.0:32000 rr
      -> 10.244.0.15:8443             Masq    1      0          0         
    TCP  10.244.0.1:30002 rr
      -> 10.244.1.95:80               Masq    1      0          0         
      -> 10.244.1.97:80               Masq    1      0          0         
      -> 10.244.2.41:80               Masq    1      0          0         
    TCP  10.244.0.1:32000 rr
      -> 10.244.0.15:8443             Masq    1      0          0         
    UDP  10.96.0.10:53 rr
      -> 10.244.0.14:53               Masq    1      0          0         
      -> 10.244.0.16:53               Masq    1      0          0   

2. 配置说明(资源文件清单)

yaml 复制代码
kind: Service  #资源类型
apiVersion: v1 #资源版本
metadata: 
  name: service
  namespace: dev
spec:
  selector:  #标签选择器,用于确定当前service代理哪些pod
    app: nginx
  type: #service类型,指定service的访问方式
  clusterIp: #虚拟服务的ip地址
  sessionAffinity: #session亲和性,支持ClientIp,None两个选项
  ports: #端口信息
    - protocol: TCP
      port: 3017  #service端口
      targetPort: 5003  #pod端口
      nodePort: 31122   #主机端口

Service类型

  • ClusterIp:默认值,它是K8S系统自动分配的虚拟IP,只能在集群内部访问
  • NodePort:将Service通过指定的Node上的端口暴露给外部,通过此方法,就可以在集群外部访问服务
  • LoadBalancer:使用外接负载均衡器完成到服务的负载分发,注意此模式需要外部云环境支持
  • ExternalName:把集群外部的服务引入到集群内部直接使用

3. 使用

利用deployment创建出3个pod,为pod设置app=nginx-pod的标签

创建deployment.yaml

yaml 复制代码
apiVersion: apps/v1
kind: Deployment
metadata: 
  name: pc-deployment
  namespace: dev
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx-pod
  template:
    metadata: 
      labels:
        app: nginx-pod
    spec:
      containers:
      - name: nginx
        image: nginx:1.17.1
        ports: 
        - containerPort: 80
shell 复制代码
[root@master service]# kubectl create -f deployment.yaml 
deployment.apps/pc-deployment created
[root@master service]# kubectl get pod -n dev -o wide
NAME                             READY   STATUS    RESTARTS   AGE   IP             NODE    NOMINATED NODE   READINESS GATES
pc-deployment-6756f95949-rdpc5   1/1     Running   0          65s   10.244.2.45    node2   <none>           <none>
pc-deployment-6756f95949-sd724   1/1     Running   0          65s   10.244.1.120   node1   <none>           <none>
pc-deployment-6756f95949-xbk6d   1/1     Running   0          65s   10.244.1.121   node1   <none>           <none>

通过pod的Ip加上容器端口80访问nginx,验证是否可以访问

为了方便后面的测试,修改下面三台nginx的index.html页面(三台修改的Ip地址不一致)

shell 复制代码
#修改第一个pod
[root@master ~]# kubectl exec -it pc-deployment-6756f95949-sd724 -n dev -- /bin/sh
# echo "10.244.1.62" > /usr/share/nginx/html/index.html
# exit
#修改第二个pod
[root@master ~]# kubectl exec -it pc-deployment-6756f95949-xbk6d -n dev -- /bin/sh
# echo "10.244.2.32" > /usr/share/nginx/html/index.html
# exit
#修改第三个pod
[root@master ~]# kubectl exec -it pc-deployment-6756f95949-rdpc5 -n dev -- /bin/sh
# echo "10.244.1.61" > /usr/share/nginx/html/index.html
# exit

3.1 ClusterIp类型的Service

创建service-clusterip.yaml文件

yaml 复制代码
apiVersion: v1
kind: Service
metadata:
  name: service-clusterip
  namespace: dev
spec:
  selector:
    app: nginx-pod
  type: ClusterIP #clusterIP: 10.96.96.96  #service的Ip地址,如果不写,会默认生成一个
  ports:
  - port: 80  #service端口
    targetPort: 80  #pod端口
shell 复制代码
[root@master service]# kubectl create -f service-clusterip.yaml
service/service-clusterip created
[root@master service]# kubectl get svc service-clusterip -n dev
NAME                TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)   AGE
service-clusterip   ClusterIP   10.96.66.152   <none>        80/TCP    8s
[root@master service]# kubectl describe svc service-clusterip -n dev
Name:              service-clusterip
Namespace:         dev
Labels:            <none>
Annotations:       <none>
Selector:          app=nginx-pod
Type:              ClusterIP
IP Family Policy:  SingleStack
IP Families:       IPv4
IP:                10.96.66.152
IPs:               10.96.66.152
Port:              <unset>  80/TCP
TargetPort:        80/TCP
Endpoints:         10.244.1.120:80,10.244.1.121:80,10.244.2.45:80
Session Affinity:  None
Events:            <none>
[root@master service]# ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
  -> RemoteAddress:Port           Forward Weight ActiveConn InActConn      
TCP  10.96.66.152:80 rr
  -> 10.244.1.120:80              Masq    1      0          0         
  -> 10.244.1.121:80              Masq    1      0          0         
  -> 10.244.2.45:80               Masq    1      0          0         

3.2 EndPoint

从上面的信息中我们看到有个字段叫EndpointsEndpoint是Kubernetes中的一个资源对象,存储在etcd中,用来记录一个service对应的所有Pod的访问地址,它是根据service配置文件中的selector描述产生的。

一个service由一组Pod组成,这些Pod通过Endpoints暴露出来,Endpoints是实现实际服务的端点集合。换言之,service和Pod之间的联系是通过Endpoints实现的。

shell 复制代码
[root@master service]# kubectl get endpoints -n dev -o wide
NAME                ENDPOINTS                                        AGE
service-clusterip   10.244.1.120:80,10.244.1.121:80,10.244.2.45:80   5m7s

3.3 负载分发策略

对service的访问被分发到了后端的pod上去,目前k8s提供了两种负载分发策略:

  • 如果不定义,默认使用kube-proxy的策略,比如随机,轮询
  • 基于客户端地址的会话保持模式,即来自同一个客户端发起的所有请求都会转发到一个固定的pod上,此模式可以使在spec中添加sessionAffinity:ClientIP选项
shell 复制代码
#循环访问测试
[root@master service]# while true;do curl 10.96.66.152:80;sleep 5;done;
10.244.2.45
10.244.1.121
10.244.1.120
10.244.2.45
10.244.1.121
10.244.1.120

修改分发策略为sessionAffinity:ClientIP

yaml 复制代码
apiVersion: v1
kind: Service
metadata:
  name: service-clusterip
  namespace: dev
spec:
  sessionAffinity: ClientIP
  selector:
    app: nginx-pod
  clusterIP: 10.96.66.152  #service的Ip地址,如果不写,会默认生成一个
  type: ClusterIP
  ports:
  - port: 80  #service端口
    targetPort: 80  #pod端口
shell 复制代码
[root@master service]# kubectl delete -f service-clusterip.yaml           
service "service-clusterip" deleted
[root@master service]# vim service-clusterip.yaml 
apiVersion: v1
kind: Service
metadata:
  name: service-clusterip
  namespace: dev
spec:
  selector:
    app: nginx-pod
  type: ClusterIP
  ports:
  - port: 80  #service端口
apiVersion: v1
kind: Service
metadata:
  name: service-clusterip
  namespace: dev
spec:
  sessionAffinity: ClientIP
  selector:
    app: nginx-pod
  clusterIP: 10.96.66.152  #service的Ip地址,如果不写,会默认生成一个
  type: ClusterIP
  ports:
  - port: 80  #service端口
    targetPort: 80  #pod端口
                                                                                                                            
"service-clusterip.yaml" 14L, 320C 已写入                                                                        
[root@master service]# kubectl create -f service-clusterip.yaml
service/service-clusterip created
[root@master service]# kubectl describe svc service-clusterip -n dev
Name:              service-clusterip
Namespace:         dev
Labels:            <none>
Annotations:       <none>
Selector:          app=nginx-pod
Type:              ClusterIP
IP Family Policy:  SingleStack
IP Families:       IPv4
IP:                10.96.66.152
IPs:               10.96.66.152
Port:              <unset>  80/TCP
TargetPort:        80/TCP
Endpoints:         10.244.1.120:80,10.244.1.121:80,10.244.2.45:80
Session Affinity:  ClientIP
Events:            <none>

重新查看ipvs映射规则【persistent代表持久】,发现新增了persistent 10800秒,代表持续180分钟

shell 复制代码
[root@master service]# ipvsadm -Ln
TCP  10.96.66.152:80 rr persistent 10800
  -> 10.244.1.120:80              Masq    1      0          1         
  -> 10.244.1.121:80              Masq    1      0          1         
  -> 10.244.2.45:80               Masq    1      0          1    

再次进行循环访问测试,发现这次只访问一个pod

shell 复制代码
[root@master service]# while true;do curl 10.96.66.218:80;sleep 5;done;
10.244.2.45
10.244.2.45
10.244.2.45
10.244.2.45

3.4 HeadLiness类型的Service

在某些场景中,开发人员可能不想使用Service提供的负载均衡功能,而希望自己来控制负载均衡策略,针对这种情况,k8s提供了HeadLiness Service,这类Service不会分配ClusterIP,如果想要访问Service,只能通过service的域名进行查询。

创建service-headliness.yaml

yaml 复制代码
apiVersion: v1
kind: Service
metadata:
  name: service-headliness
  namespace: dev
spec:
  selector:
    app: nginx-pod
  clusterIP: None  #将clusterIP设置为None,即可创建headliness Service
  type: ClusterIP
  ports:
  - port: 80
    targetPort: 80
shell 复制代码
[root@master service]# kubectl create -f service-headliness.yaml
service/service-headliness created
[root@master service]# kubectl get svc service-headliness -n dev
NAME                 TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)   AGE
service-headliness   ClusterIP   None         <none>        80/TCP    6s
[root@master service]# kubectl describe svc service-headliness -n dev
Name:              service-headliness
Namespace:         dev
Labels:            <none>
Annotations:       <none>
Selector:          app=nginx-pod
Type:              ClusterIP
IP Family Policy:  SingleStack
IP Families:       IPv4
IP:                None
IPs:               None
Port:              <unset>  80/TCP
TargetPort:        80/TCP
Endpoints:         10.244.1.120:80,10.244.1.121:80,10.244.2.45:80
Session Affinity:  None
Events:            <none>

查看域名解析情况

shell 复制代码
[root@master service]# kubectl exec -it pc-deployment-6756f95949-rdpc5 -n dev -- /bin/sh
# cat /etc/resolv.conf
nameserver 10.96.0.10
search dev.svc.cluster.local svc.cluster.local cluster.local
options ndots:5
# exit
#需要进入pod访问 但是pod内 无curl命令
#通过域名进行查询验证一下即可
[root@master ~]# yum -y install bind-utils
[root@master ~]# dig @10.96.0.10 service-headliness.dev.svc.cluster.local
; <<>> DiG 9.11.4-P2-RedHat-9.11.4-26.P2.el7_9.9 <<>> @10.96.0.10 service-headliness.dev.svc.cluster.local
; (1 server found)
;; global options: +cmd
;; Got answer:
;; WARNING: .local is reserved for Multicast DNS
;; You are currently testing what happens when an mDNS query is leaked to DNS
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 3116
;; flags: qr aa rd; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;service-headliness.dev.svc.cluster.local. IN A

;; ANSWER SECTION:
service-headliness.dev.svc.cluster.local. 30 IN A 10.244.1.120
service-headliness.dev.svc.cluster.local. 30 IN A 10.244.2.45
service-headliness.dev.svc.cluster.local. 30 IN A 10.244.1.121

;; Query time: 9 msec
;; SERVER: 10.96.0.10#53(10.96.0.10)
;; WHEN: 日 8月 14 13:18:02 CST 2022
;; MSG SIZE  rcvd: 237

3.5 NodePort类型的Service

在前面的应用中,创建的Service的IP地址只有集群内部可以访问,如果希望Service暴露给集群外部使用,那么就要使用到另外一种类型的Service,称为NodePort类型。NodePort的工作原理其实就是将service的端口映射到Node的一个端口上,然后就可以通过NodeIp:NodePort来访问service了。

创建service-nodeport.yaml

yaml 复制代码
apiVersion: v1
kind: Service
metadata: 
  name: service-nodeport
  namespace: dev
spec:
  selector:
    app: nginx-pod
  type: NodePort  #service类型
  ports:
  - port: 80
    nodePort: 30003 #指定绑定的node的端口(默认的取值范围是:30000-32767),如果不指定,会默认分配
    targetPort: 80
shell 复制代码
[root@master service]# kubectl create -f service-nodeport.yaml    
service/service-nodeport created
[root@master service]# kubectl get svc service-nodeport -n dev
NAME               TYPE       CLUSTER-IP      EXTERNAL-IP   PORT(S)        AGE
service-nodeport   NodePort   10.96.114.171   <none>        80:30003/TCP   14s

3.6 LoadBalancer类型的Service

LoadBalancer和NodePort很相似,目的都是向外部暴露一个端口,区别在于LoadBalancer会在集群的外部再来做一个负载均衡设备,而这个设备需要外部环境支持的,外部服务发送到这个设备上的请求,会被设备负载之后转发到集群中。

3.7 ExternalName类型的Service

ExternalName类型的Service用于引入集群外部的服务,它通过externalName属性指定外部一个服务的地址,然后在集群内部访问此Service就可以访问到外部的服务了

创建service-externalname.yaml

yaml 复制代码
apiVersion: v1
kind: Service
metadata:
  name: service-externalname
  namespace: dev
spec:
  type: ExternalName  #service类型
  externalName: www.baidu.com  #改成ip地址也可以
shell 复制代码
[root@master service]# kubectl create -f service-externalname.yaml 
service/service-externalname created
[root@master service]# kubectl get svc service-externalname -n dev
NAME                   TYPE           CLUSTER-IP   EXTERNAL-IP     PORT(S)   AGE
service-externalname   ExternalName   <none>       www.baidu.com   <none>    5s
[root@master service]# dig @10.96.0.10 service-externalname.dev.svc.cluster.local

; <<>> DiG 9.11.4-P2-RedHat-9.11.4-26.P2.el7_9.9 <<>> @10.96.0.10 service-externalname.dev.svc.cluster.local
; (1 server found)
;; global options: +cmd
;; Got answer:
;; WARNING: .local is reserved for Multicast DNS
;; You are currently testing what happens when an mDNS query is leaked to DNS
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 51694
;; flags: qr aa rd; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;service-externalname.dev.svc.cluster.local. IN A

;; ANSWER SECTION:
service-externalname.dev.svc.cluster.local. 30 IN CNAME www.baidu.com.
www.baidu.com.          30      IN      CNAME   www.a.shifen.com.
www.a.shifen.com.       30      IN      A       14.215.177.39
www.a.shifen.com.       30      IN      A       14.215.177.38

;; Query time: 98 msec
;; SERVER: 10.96.0.10#53(10.96.0.10)
;; WHEN: 日 8月 14 21:52:44 CST 2022
;; MSG SIZE  rcvd: 247

4. Ingress

4.1 介绍

在前面的学习中已经知道,Service对集群之外暴露服务的主要方式有两种:NodePort和LoadBalancer,但是这两种方式,都有一定的缺点:

  • NodePort方式的缺点是会占用很多集群机器的端口,那么当集群服务变多的时候,这个缺点就愈发明显
  • LB方式的缺点是每个service需要一个LB,浪费、麻烦,并且需要k8s之外设备的支持

基于这种现状,k8s提供了Ingress资源对象。工作机制大致如下图所示:

实际上,Ingress相当于一个7层的负载均衡器,是k8s对反向代理的一个抽象,它的工作原理类似于Nginx,可以理解成在Ingress里建立诸多映射规则,Ingress Controller通过监听这些配置规则并转化成Nginx的配置,然后对外部提供服务。在这里有两个核心概念:

  • ingress:k8s中的一个对象,作用是定义请求如何转发到service的规则
  • ingress controller:具体实现反向代理及负载均衡的程序,对ingress定义的规则进行解析,根据配置的规则来实现请求转发,实现方式有很多,比如nginx,contour,haproxy等等。

Ingress(以nginx为例)的工作原理如下:

  1. 用户编写ingress规则,说明哪个域名对应k8s集群中的哪个service
  2. ingress控制器动态感知ingress服务规则的变化,然后生成一段对应的nginx配置
  3. ingress控制器会将生成的nginx配置写入到一个运行着的nginx服务中,并动态更新
  4. 到此为止,其实真正在工作的就是一个nginx了,内部配置了用户定义的请求转发规则

4.2 使用

4.2.1 搭建ingress环境
shell 复制代码
kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/controller-v1.3.0/deploy/static/provider/cloud/deploy.yaml

由于一些原因,镜像无法下载所以资料中准备好了修改过后的deploy.yaml

shell 复制代码
[root@master ingress-controller]# kubectl label nodes node1 hasIngress=true
[root@master ingress-controller]# kubectl label nodes node2 hasIngress=true
[root@master ingress-controller]# kubectl apply -f deploy.yaml
namespace/ingress-nginx created
serviceaccount/ingress-nginx created
serviceaccount/ingress-nginx-admission created
role.rbac.authorization.k8s.io/ingress-nginx created
role.rbac.authorization.k8s.io/ingress-nginx-admission created
clusterrole.rbac.authorization.k8s.io/ingress-nginx created
clusterrole.rbac.authorization.k8s.io/ingress-nginx-admission created
rolebinding.rbac.authorization.k8s.io/ingress-nginx created
rolebinding.rbac.authorization.k8s.io/ingress-nginx-admission created
clusterrolebinding.rbac.authorization.k8s.io/ingress-nginx created
clusterrolebinding.rbac.authorization.k8s.io/ingress-nginx-admission created
configmap/ingress-nginx-controller created
service/ingress-nginx-controller created
service/ingress-nginx-controller-admission created
daemonset.apps/ingress-nginx-controller created
job.batch/ingress-nginx-admission-create created
job.batch/ingress-nginx-admission-patch created
ingressclass.networking.k8s.io/nginx created
validatingwebhookconfiguration.admissionregistration.k8s.io/ingress-nginx-admission created
[root@master ingress-controller]# kubectl get pod -n ingress-nginx -o wide 
[root@master ingress-controller]# kubectl get pod -n ingress-nginx -o wide 
NAME                                   READY   STATUS      RESTARTS   AGE   IP                NODE    NOMINATED NODE   READINESS GATES
ingress-nginx-admission-create-vlr4h   0/1     Completed   0          24m   10.244.1.125      node1   <none>           <none>
ingress-nginx-admission-patch-vlx7d    0/1     Completed   1          24m   10.244.1.126      node1   <none>           <none>
ingress-nginx-controller-m5jld         1/1     Running     0          24m   192.168.200.102   node1   <none>           <none>
ingress-nginx-controller-t52dn         1/1     Running     0          24m   192.168.200.103   node2   <none>           <none>
[root@master ingress-controller]# kubectl get svc -n ingress-nginx
NAME                                 TYPE           CLUSTER-IP      EXTERNAL-IP   PORT(S)                      AGE
ingress-nginx-controller             LoadBalancer   10.96.49.11     <pending>     80:31915/TCP,443:30664/TCP   24m
ingress-nginx-controller-admission   ClusterIP      10.96.201.100   <none>        443/TCP                      24m
4.2.2 准备service和pod

创建下图所示的模型

创建tomcat-nginx.yaml

yaml 复制代码
apiVersion: apps/v1
kind: Deployment
metadata: 
  name: nginx-deployment
  namespace: dev
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx-pod
  template:
    metadata:
      labels:
        app: nginx-pod
    spec:
      containers:
      - name: nginx
        image: nginx:1.17.1
        ports: 
        - containerPort: 80

---

apiVersion: apps/v1
kind: Deployment
metadata: 
  name: tomcat-deployment
  namespace: dev
spec:
  replicas: 3
  selector:
    matchLabels:
      app: tomcat-pod
  template:
    metadata:
      labels:
        app: tomcat-pod
    spec:
      containers:
      - name: tomcat
        image: tomcat:8.5-jre10-slim
        ports: 
        - containerPort: 8080

---

apiVersion: v1
kind: Service
metadata: 
  name: nginx-service
  namespace: dev
spec:
  selector:
    app: nginx-pod
  clusterIP: None
  type: ClusterIP
  ports:
  - port: 80
    targetPort: 80

---

apiVersion: v1
kind: Service
metadata: 
  name: tomcat-service
  namespace: dev
spec:
  selector:
    app: tomcat-pod
  clusterIP: None
  type: ClusterIP
  ports:
  - port: 8080
    targetPort: 8080
shell 复制代码
[root@master service]# kubectl create -f tomcat-nginx.yaml 
deployment.apps/nginx-deployment created
deployment.apps/tomcat-deployment created
service/nginx-service created
service/tomcat-service created
[root@master service]# kubectl get svc -n dev
NAME             TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)    AGE
nginx-service    ClusterIP   None         <none>        80/TCP     50s
tomcat-service   ClusterIP   None         <none>        8080/TCP   50s
4.2.3 Http代理

创建ingress-http.yaml

yaml 复制代码
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: ingress-http
  namespace: dev
spec:
  ingressClassName: nginx
  rules:
  - host: nginx.test.com
    http:
      paths:
      - path: /
        pathType: Prefix
        backend:
          service:
            name: nginx-service
            port:
              number: 80
  - host: tomcat.test.com
    http:
      paths:
      - path: /
        pathType: Prefix
        backend:
          service:
            name: tomcat-service
            port:
              number: 8080
shell 复制代码
[root@master service]# kubectl create -f ingress-http.yaml 
ingress.networking.k8s.io/ingress-http created
[root@master service]# kubectl get ing ingress-http -n dev
NAME           CLASS   HOSTS                            ADDRESS   PORTS   AGE
ingress-http   nginx   nginx.test.com,tomcat.test.com             80      22s
[root@master service]# kubectl describe ing ingress-http -n dev
Name:             ingress-http
Labels:           <none>
Namespace:        dev
Address:          
Default backend:  default-http-backend:80 (<error: endpoints "default-http-backend" not found>)
Rules:
  Host             Path  Backends
  ----             ----  --------
  nginx.test.com   
                   /   nginx-service:80 (10.244.1.120:80,10.244.1.121:80,10.244.1.129:80 + 3 more...)
  tomcat.test.com  
                   /   tomcat-service:8080 (10.244.1.127:8080,10.244.1.128:8080,10.244.2.49:8080)
Annotations:       <none>
Events:
  Type    Reason  Age   From                      Message
  ----    ------  ----  ----                      -------
  Normal  Sync    29s   nginx-ingress-controller  Scheduled for sync
  Normal  Sync    29s   nginx-ingress-controller  Scheduled for sync

修改本机的hosts文件

shell 复制代码
node虚拟机的IP地址    nginx.test.com
node虚拟机的IP地址    tomcat.test.com

查看ingress为service提供的端口号

shell 复制代码
[root@master service]# kubectl get svc -n ingress-nginx
NAME                                 TYPE           CLUSTER-IP      EXTERNAL-IP   PORT(S)                      AGE
ingress-nginx-controller             LoadBalancer   10.96.49.11     <pending>     80:31915/TCP,443:30664/TCP   38m
ingress-nginx-controller-admission   ClusterIP      10.96.201.100   <none>        443/TCP                      38m
相关推荐
小马爱打代码9 分钟前
125个Docker的常用命令
运维·docker·容器
xiao-xiang14 分钟前
jenkins-k8s pod方式动态生成slave节点
java·kubernetes·jenkins
胡八一39 分钟前
解决docker: ‘buildx‘ is not a docker command.
运维·docker·容器
QQ_7781329743 小时前
在K8S中使用Values文件定制不同环境下的应用配置详解
kubernetes
m0_748245523 小时前
冯诺依曼架构和哈佛架构的主要区别?
微服务·云原生·架构
huosenbulusi11 小时前
helm推送到harbor私有库--http: server gave HTTP response to HTTPS client
云原生·容器·k8s
不会飞的小龙人12 小时前
Docker Compose创建镜像服务
linux·运维·docker·容器·镜像
不会飞的小龙人12 小时前
Docker基础安装与使用
linux·运维·docker·容器
weixin_SAG13 小时前
第3天:阿里巴巴微服务解决方案概览
微服务·云原生·架构
helianying5515 小时前
云原生架构下的AI智能编排:ScriptEcho赋能前端开发
前端·人工智能·云原生·架构