【跟马少平老师学AI】-【神经网络是怎么实现的】(七-2)word2vec模型

一句话归纳:
1)CBOW模型:

  • 2c个向量是相加,而不是拼接。

2)CBOW模型中的哈夫曼树:

  • 从root开始,向左为1,向右为0。
  • 叶子结点对应词有中的一个词。
  • 每个词对应唯一的编码。
  • 词编码不等长。

3)CBOW模型输出为到达哈夫曼树每一个非叶子结点时向右走的概率。

  • 计算每个叶子结点的概率,以图为例W2的概率为
  • 取对数取反,作损失函数
相关推荐
天天扭码17 分钟前
从图片到语音:我是如何用两大模型API打造沉浸式英语学习工具的
前端·人工智能·github
张彦峰ZYF1 小时前
从检索到生成:RAG 如何重构大模型的知识边界?
人工智能·ai·aigc
刘海东刘海东1 小时前
结构型智能科技的关键可行性——信息型智能向结构型智能的转变(修改提纲)
人工智能·算法·机器学习
**梯度已爆炸**1 小时前
NLP文本预处理
人工智能·深度学习·nlp
uncle_ll1 小时前
李宏毅NLP-8-语音模型
人工智能·自然语言处理·语音识别·语音模型·lm
Liudef061 小时前
FLUX.1-Kontext 高效训练 LoRA:释放大语言模型定制化潜能的完整指南
人工智能·语言模型·自然语言处理·ai作画·aigc
静心问道1 小时前
大型语言模型中的自动化思维链提示
人工智能·语言模型·大模型
众链网络2 小时前
你的Prompt还有很大提升
人工智能·prompt·ai写作·ai工具·ai智能体
汀沿河2 小时前
2 大模型高效参数微调;prompt tunning
人工智能·深度学习·prompt
路溪非溪2 小时前
机器学习之线性回归
人工智能·机器学习·线性回归