SVM单类异常值检测

SVM是一种广泛使用的分类器,通常用于二分类或多分类问题。然而,在异常点检测的场景中,我们通常会将数据视为一个类别(即正常数据点),并尝试找到那些与正常数据点显著不同的点(即异常点)。这可以通过One-Class SVM(单类支持向量机)来实现。
SVM单类异常值检测代码获取戳此处代码获取戳此处

One-Class SVM的原理是寻找一个超平面,使得正常数据点尽可能地分布在这个超平面的一侧,同时使得超平面与原点(或指定的其他点)之间的距离最大化。这样,那些位于超平面另一侧或远离超平面的点就可以被视为异常点。

具体来说,One-Class SVM会学习一个决策函数,该函数将正常数据点的特征空间映射到一个高维空间中,并在这个高维空间中寻找一个最优超平面。这个超平面会尽可能地将正常数据点与原点分开,同时使得超平面与原点之间的距离最大化。在训练过程中,One-Class SVM会利用核函数(如RBF核、线性核等)将数据映射到高维空间,并在这个空间中寻找最优超平面。

实现步骤

  1. 数据准备:首先,收集并整理好一定量的数据样本,包括各个特征的变量数据。这些数据应该主要是正常数据点,因为我们的目标是找出与这些正常数据点显著不同的异常点。
  2. 数据预处理:对数据进行必要的预处理,如标准化、归一化、降维等。这些步骤可以帮助提高SVM模型的性能,并减少过拟合的风险。
  3. 选择核函数:根据数据的特点和问题的需求,选择一个合适的核函数。常用的核函数包括RBF核、线性核、多项式核等。不同的核函数适用于不同类型的数据和问题。
  4. 训练One-Class SVM模型:使用训练数据来训练One-Class SVM模型。在训练过程中,模型会学习一个决策函数,该函数将正常数据点的特征空间映射到一个高维空间中,并在这个高维空间中寻找一个最优超平面。
  5. 异常检测:将测试数据输入到训练好的One-Class SVM模型中,得到每个测试数据点的决策函数值。根据这些值的大小,可以判断哪些数据点是异常点。通常,那些决策函数值较小的数据点被认为是异常点。

部分代码

复制代码
%% 导入数据
load('matlab.mat');
X = res(:,1:6); % 特征数据
n = size(X, 1);

%% 划分训练集和测试集
rng(1); % 设置随机数种子,以确保结果可重现
train_ratio = 1; % 训练集占比
idx = randperm(n);
X_train = X(idx(1:round(train_ratio*n)), :);

%% 数据归一化
[~,ps] = mapminmax(X_train', 0, 1); % 对训练数据进行归一化
X_train_normalized = mapminmax('apply', X_train', ps)'; % 归一化训练数据

%% 创建模型
nu = 0.05; % 设置 OCSVM 参数 nu

效果图

相关推荐
2401_841495644 分钟前
【数据结构】基于Floyd算法的最短路径求解
java·数据结构·c++·python·算法··floyd
格林威14 分钟前
UV紫外相机的简单介绍和场景应用
人工智能·数码相机·计算机视觉·视觉检测·制造·uv·工业相机
珊珊而川21 分钟前
SAUP 算法
算法
寂静山林40 分钟前
UVa 1471 Defense Lines
算法
番石榴AI1 小时前
自己动手做一款ChatExcel数据分析系统,智能分析 Excel 数据
人工智能·python·数据挖掘·excel
laopeng3011 小时前
基于Spring AI Deep Researcher Agent
java·人工智能·spring
lzptouch1 小时前
数据预处理(音频/图像/视频/文字)及多模态统一大模型输入方案
人工智能·音视频
星期天要睡觉1 小时前
深度学习——循环神经网络(RNN)
人工智能·python·rnn·深度学习·神经网络
jieba121381 小时前
CAA机器学习
人工智能
CHANG_THE_WORLD1 小时前
switch语句在汇编层面的几种优化方式 ,为什么能进行优化
汇编·算法·switch·汇编分析·switch case·switch case 汇编·switch case 语句