【LLM 论文】CREA-ICL:利用跨语言检索来增强小语种的 ICL 能力

论文:From Classification to Generation: Insights into Crosslingual Retrieval Augmented ICL

⭐⭐⭐⭐

NeurIPS 2023, arXiv:2311.06595

文章目录

    • 论文速读
    • 总结

论文速读

有很多外国语言因为其语言复杂性、标记数据集的缺乏以及数据重复等问题,LLM 在这些低资源语言上的 instruction-following 的能力会变差,进而限制它们的 In-Context Learning(ICL)的表现。

为了解决低资源语言(如孟加拉语)在大型语言模型(LLMs)的上下文学习(ICL)性能受限的问题,本文提出了跨语言检索增强的上下文学习 (CREA-ICL),其思路是:对于一个低资源语言的 input test q q q,使用 embedding encoder 将其映射到一个 shared embedding space 中,然后利用 cosine similarity 计算它与高资源语言的 corpus 的文档相似度,从中检索出 top-k 个文档,然后利用 prompt 把这些高资源语言作为 ICL 的 exemplars,实现让 LLM 去解决 input test 的问题。

框架图示如下:

上图是一个对孟加拉语的问题做情感分类的示例。Telugu input 是一个孟加拉语表述的文本,首先会通过 Cross-Lingual Retriever 从高资源语言的 corpus 中检索出 k 个最相关的英文 samples,根据 sample 是否存在 label:

  • 如果有 label,那就使用这个 label
  • 如果没有 label,那就使用 self-prediction 让 LLM 生成一个 label

然后把 (English sample, label) 作为 ICL 的 exemplars,通过 prompt 让 LLM 去解决 Telugu input 文本的情感分类问题。

总结

论文提出的方法的思路都在这个图中了,看懂这个图就可以看懂这个方法了。

这篇论文讨论了一个常见问题:低资源语言该如何利用好 LLM 的各项能力。因为中文和英文的语料较多,导致了 LLM 能够表现不错,但对于很多小语种来说,资料的缺乏可能会让 LLM 在某些能力上出现缺失,通过跨语言检索也许能解决其中的一些问题。

相关推荐
Exploring4 分钟前
从零搭建使用 Open-AutoGML 搜索附近的美食
android·人工智能
阿里云大数据AI技术18 分钟前
在 DataWorks 中一键部署大模型,即刻用于数据集成和数据开发
人工智能
AI科技星24 分钟前
质量定义方程常数k = 4π m_p的来源、推导与意义
服务器·数据结构·人工智能·科技·算法·机器学习·生活
机器之心39 分钟前
OpenAI推出全新ChatGPT Images,奥特曼亮出腹肌搞宣传
人工智能·openai
机器之心41 分钟前
SIGGRAPH Asia 2025:摩尔线程赢图形顶会3DGS挑战赛大奖,自研LiteGS全面开源
人工智能·openai
青衫客3643 分钟前
浅谈 LightRAG —— 把“结构理解”前移到索引阶段的 RAG 新范式
大模型·llm·rag
_Stellar44 分钟前
从输入到输出:大语言模型一次完整推理简单解析
人工智能·语言模型·自然语言处理
【建模先锋】44 分钟前
特征提取+概率神经网络 PNN 的轴承信号故障诊断模型
人工智能·深度学习·神经网络·信号处理·故障诊断·概率神经网络·特征提取
轲轲011 小时前
Week02 深度学习基本原理
人工智能·深度学习