【LLM 论文】CREA-ICL:利用跨语言检索来增强小语种的 ICL 能力

论文:From Classification to Generation: Insights into Crosslingual Retrieval Augmented ICL

⭐⭐⭐⭐

NeurIPS 2023, arXiv:2311.06595

文章目录

    • 论文速读
    • 总结

论文速读

有很多外国语言因为其语言复杂性、标记数据集的缺乏以及数据重复等问题,LLM 在这些低资源语言上的 instruction-following 的能力会变差,进而限制它们的 In-Context Learning(ICL)的表现。

为了解决低资源语言(如孟加拉语)在大型语言模型(LLMs)的上下文学习(ICL)性能受限的问题,本文提出了跨语言检索增强的上下文学习 (CREA-ICL),其思路是:对于一个低资源语言的 input test q q q,使用 embedding encoder 将其映射到一个 shared embedding space 中,然后利用 cosine similarity 计算它与高资源语言的 corpus 的文档相似度,从中检索出 top-k 个文档,然后利用 prompt 把这些高资源语言作为 ICL 的 exemplars,实现让 LLM 去解决 input test 的问题。

框架图示如下:

上图是一个对孟加拉语的问题做情感分类的示例。Telugu input 是一个孟加拉语表述的文本,首先会通过 Cross-Lingual Retriever 从高资源语言的 corpus 中检索出 k 个最相关的英文 samples,根据 sample 是否存在 label:

  • 如果有 label,那就使用这个 label
  • 如果没有 label,那就使用 self-prediction 让 LLM 生成一个 label

然后把 (English sample, label) 作为 ICL 的 exemplars,通过 prompt 让 LLM 去解决 Telugu input 文本的情感分类问题。

总结

论文提出的方法的思路都在这个图中了,看懂这个图就可以看懂这个方法了。

这篇论文讨论了一个常见问题:低资源语言该如何利用好 LLM 的各项能力。因为中文和英文的语料较多,导致了 LLM 能够表现不错,但对于很多小语种来说,资料的缺乏可能会让 LLM 在某些能力上出现缺失,通过跨语言检索也许能解决其中的一些问题。

相关推荐
华玥作者6 小时前
[特殊字符] VitePress 对接 Algolia AI 问答(DocSearch + AI Search)完整实战(下)
前端·人工智能·ai
AAD555888996 小时前
YOLO11-EfficientRepBiPAN载重汽车轮胎热成像检测与分类_3
人工智能·分类·数据挖掘
王建文go6 小时前
RAG(宠物健康AI)
人工智能·宠物·rag
ALINX技术博客6 小时前
【202601芯动态】全球 FPGA 异构热潮,ALINX 高性能异构新品预告
人工智能·fpga开发·gpu算力·fpga
易营宝6 小时前
多语言网站建设避坑指南:既要“数据同步”,又能“按市场个性化”,别踩这 5 个坑
大数据·人工智能
fanstuck7 小时前
从0到提交,如何用 ChatGPT 全流程参与建模比赛的
大数据·数学建模·语言模型·chatgpt·数据挖掘
春日见7 小时前
vscode代码无法跳转
大数据·人工智能·深度学习·elasticsearch·搜索引擎
Drgfd7 小时前
真智能 vs 伪智能:天选 WE H7 Lite 用 AI 人脸识别 + 呼吸灯带,重新定义智能化充电桩
人工智能·智能充电桩·家用充电桩·充电桩推荐
萤丰信息8 小时前
AI 筑基・生态共荣:智慧园区的价值重构与未来新途
大数据·运维·人工智能·科技·智慧城市·智慧园区
盖雅工场8 小时前
排班+成本双管控,餐饮零售精细化运营破局
人工智能·零售餐饮·ai智能排班