【LLM 论文】CREA-ICL:利用跨语言检索来增强小语种的 ICL 能力

论文:From Classification to Generation: Insights into Crosslingual Retrieval Augmented ICL

⭐⭐⭐⭐

NeurIPS 2023, arXiv:2311.06595

文章目录

    • 论文速读
    • 总结

论文速读

有很多外国语言因为其语言复杂性、标记数据集的缺乏以及数据重复等问题,LLM 在这些低资源语言上的 instruction-following 的能力会变差,进而限制它们的 In-Context Learning(ICL)的表现。

为了解决低资源语言(如孟加拉语)在大型语言模型(LLMs)的上下文学习(ICL)性能受限的问题,本文提出了跨语言检索增强的上下文学习 (CREA-ICL),其思路是:对于一个低资源语言的 input test q q q,使用 embedding encoder 将其映射到一个 shared embedding space 中,然后利用 cosine similarity 计算它与高资源语言的 corpus 的文档相似度,从中检索出 top-k 个文档,然后利用 prompt 把这些高资源语言作为 ICL 的 exemplars,实现让 LLM 去解决 input test 的问题。

框架图示如下:

上图是一个对孟加拉语的问题做情感分类的示例。Telugu input 是一个孟加拉语表述的文本,首先会通过 Cross-Lingual Retriever 从高资源语言的 corpus 中检索出 k 个最相关的英文 samples,根据 sample 是否存在 label:

  • 如果有 label,那就使用这个 label
  • 如果没有 label,那就使用 self-prediction 让 LLM 生成一个 label

然后把 (English sample, label) 作为 ICL 的 exemplars,通过 prompt 让 LLM 去解决 Telugu input 文本的情感分类问题。

总结

论文提出的方法的思路都在这个图中了,看懂这个图就可以看懂这个方法了。

这篇论文讨论了一个常见问题:低资源语言该如何利用好 LLM 的各项能力。因为中文和英文的语料较多,导致了 LLM 能够表现不错,但对于很多小语种来说,资料的缺乏可能会让 LLM 在某些能力上出现缺失,通过跨语言检索也许能解决其中的一些问题。

相关推荐
北京耐用通信26 分钟前
耐达讯自动化PROFIBUS三路中继器:突破工业通信距离与干扰限制的利器
人工智能·物联网·自动化·信息与通信
德迅云安全—珍珍6 小时前
2026 年网络安全预测:AI 全面融入实战的 100+行业洞察
人工智能·安全·web安全
数新网络8 小时前
CyberScheduler —— 打破数据调度边界的核心引擎
人工智能
Codebee8 小时前
Ooder框架8步编码流程实战 - DSM组件UI统计模块深度解析
人工智能
Deepoch8 小时前
智能升级新范式:Deepoc开发板如何重塑康复辅具产业生态
人工智能·具身模型·deepoc·智能轮椅
赋创小助手8 小时前
融合与跃迁:NVIDIA、Groq 与下一代 AI 推理架构的博弈与机遇
服务器·人工智能·深度学习·神经网络·语言模型·自然语言处理·架构
静听松涛1339 小时前
多智能体协作中的通信协议演化
人工智能
基咯咯9 小时前
Google Health AI发布MedASR:Conformer 医疗语音识别如何服务临床口述与对话转写
人工智能
白日做梦Q9 小时前
深度学习模型评估指标深度解析:不止于准确率的科研量化方法
人工智能·深度学习
Yyyyy123jsjs9 小时前
外汇Tick数据交易时段详解与Python实战分析
人工智能·python·区块链