神经网络:手写数字图像识别

一、导入相关库函数

python 复制代码
import matplotlib.pyplot as plt
import tensorflow as tf
import keras
import numpy as np

二、载入mnist数据集

使用keras.中的mnist数据集

python 复制代码
(train_images, train_labels), (test_images, test_labels)=\
keras.datasets.mnist.load_data()

三、测试数据的情况,数据集图像和label标签

python 复制代码
x = train_images[2]
y = train_labels[2]
plt.title('label: %i' % y)
plt.imshow(x, cmap=plt.cm.gray_r, interpolation='nearest')

四、建立神经网络模型

keras中有API帮助建立,用Sequential的AIP建立

python 复制代码
model = keras.Sequential([
    #模型是多层的,底层是输入层,做Flatten,input_shape分辨率28*28
    keras.layers.Flatten(input_shape=(28,28)),
    #隐藏层,使用relu
    keras.layers.Dense(128, activation=tf.nn.relu),
    #输出层,10分类,数字从0~9,一共10种(选择softmax)
    keras.layers.Dense(10,activation=tf.nn.softmax)
])

五、将模型进行compile,优化器optimizers.Adam(),选择损失函数loss,用精度来度量

python 复制代码
model.compile(optimizer=tf.optimizers.Adam(),
             loss='sparse_categorical_crossentropy',
             metrics=['accuracy'])

六、打印model,神经网络模型,三层结构

看一下神经网络模型结构:三层,输入层784,隐藏层128,输出层10

python 复制代码
model.summary()

七、训练神经网络模型,精度在增长,loss减少

epochs迭代次数,这里选择10次迭代

python 复制代码
model.fit(train_images,train_labels,epochs=10)

八、评估,测试模型性能

python 复制代码
test_loss,test_acc = model.evaluate(test_images, test_labels)

九、训练的模型进行预测

python 复制代码
predictions = model.predict(test_images)

十、测试模型,用测试集进行

预测结果为

复制代码
[0. 0. 1. 0. 0. 0. 0. 0. 0. 0.],1的index为2,预测值为2,和真实值一致,预测成功。
python 复制代码
x_test = test_images[888]
y_test = test_labels[888]
y_pred = predictions[888]

#打印x_test图像
plt.imshow(x_test,cmap=plt.cm.gray_r,interpolation='nearest')

y_pred2 = np.around(
    y_pred,
    decimals=1
)
print(y_pred2)
复制代码
output:

[0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]

十一、完整代码

python 复制代码
import matplotlib.pyplot as plt
import tensorflow as tf
import keras
import numpy as np

#载入mnist数据集
(train_images, train_labels), (test_images, test_labels)=\
keras.datasets.mnist.load_data()

#建立神经网络模型
#keras中有API帮助建立,用Sequential的AIP建立
model = keras.Sequential([
    #模型是多层的,底层是输入层,做Flatten,input_shape分辨率28*28
    keras.layers.Flatten(input_shape=(28,28)),
    #隐藏层,使用relu
    keras.layers.Dense(128, activation=tf.nn.relu),
    #输出层,10分类,数字从0~9,一共10种(选择softmax)
    keras.layers.Dense(10,activation=tf.nn.softmax)
])

#将模型进行compile,优化器optimizers.Adam(),选择损失函数loss,用精度来度量
model.compile(optimizer=tf.optimizers.Adam(),
             loss='sparse_categorical_crossentropy',
             metrics=['accuracy'])

#训练神经网络模型,精度在增长,loss减少
#epochs迭代次数,这里选择10次迭代
model.fit(train_images,train_labels,epochs=10)

#评估,测试模型性能
#在测试数据集上进行评估
test_loss,test_acc = model.evaluate(test_images, test_labels)

#刚刚训练的模型进行预测
predictions = model.predict(test_images)

x_test = test_images[888]
y_test = test_labels[888]
y_pred = predictions[888]

#打印x_test图像
plt.imshow(x_test,cmap=plt.cm.gray_r,interpolation='nearest')

y_pred2 = np.around(
    y_pred,
    decimals=1
)
print(y_pred2)
相关推荐
张较瘦_几秒前
[论文阅读] 人工智能 + 软件工程 | 大语言模型驱动的多来源漏洞影响库识别研究解析
论文阅读·人工智能·语言模型
艾醒11 分钟前
大模型面试题剖析:RAG中的文本分割策略
人工智能·算法
算家计算14 分钟前
马斯克突然裁掉500名AI训练师!重心转向招募专业领域AI导师
人工智能·资讯·grok
什么都想学的阿超15 分钟前
【大语言模型 58】分布式文件系统:训练数据高效存储
人工智能·语言模型·自然语言处理
ViperL130 分钟前
[智能算法]可微的神经网络搜索算法-FBNet
人工智能·深度学习·神经网络
新智元30 分钟前
马斯克深夜挥刀,Grok 幕后员工 1/3 失业!谷歌 AI 靠人肉堆起,血汗工厂曝光
人工智能·openai
带娃的IT创业者31 分钟前
Windows 平台上基于 MCP 构建“文心一言+彩云天气”服务实战
人工智能·windows·文心一言·mcp
Dxy12393102161 小时前
python把文件从一个文件复制到另一个文件夹
开发语言·python
金井PRATHAMA1 小时前
认知语义学隐喻理论对人工智能自然语言处理中深层语义分析的赋能与挑战
人工智能·自然语言处理·知识图谱