pytorch笔记:ReplicationPad1d

python 复制代码
torch.nn.ReplicationPad1d(padding)
  • 在 PyTorch 中,ReplicationPad1d 是一种用于一维数据的填充层
  • 该层通过复制序列的边缘值来增加数据的长度,这在卷积神经网络中常用于保持数据尺寸
  • 主要参数

|---------|-----------------------------------------------------------------------------------------------------|
| padding | 可以是一个整数或一个元组。 * 如果是一个整数,它表示在序列的每一端都填充相同数量的值。 * 如果是一个元组 (pad_left, pad_right),则分别在序列的左边和右边填充指定数量的值 |

  • 工作原理:

    • 假设有一个序列 [a, b, c, d],并且设置 padding=(2, 3),那么填充后的序列将是 [a, a, a, b, c, d, d, d, d]

    • 这里,左边的 a 被复制了两次,右边的 d 被复制了三次。

  • 举例:

python 复制代码
import torch
import torch.nn as nn

# 创建一维数据
data = torch.tensor([1, 2, 3, 4], dtype=torch.float32).unsqueeze(0).unsqueeze(0)  # shape: [1, 1, 4]

data,data.shape
#(tensor([[[1., 2., 3., 4.]]]), torch.Size([1, 1, 4]))




pad = nn.ReplicationPad1d((2, 3))

# 应用填充
padded_data = pad(data)

print(padded_data) 
#tensor([[[1., 1., 1., 2., 3., 4., 4., 4., 4.]]])
相关推荐
艾莉丝努力练剑7 小时前
【Python基础:语法第一课】Python 基础语法详解:变量、类型、动态特性与运算符实战,构建完整的编程基础认知体系
大数据·人工智能·爬虫·python·pycharm·编辑器
一个平凡而乐于分享的小比特7 小时前
UCOSIII笔记(十四)时间戳
笔记·时间戳·ucosiii
MobotStone7 小时前
数字沟通之道
人工智能·算法
Together_CZ7 小时前
Cambrian-S: Towards Spatial Supersensing in Video——迈向视频中的空间超感知
人工智能·机器学习·音视频·spatial·cambrian-s·迈向视频中的空间超感知·supersensing
YJlio8 小时前
ShareEnum 学习笔记(9.5):内网共享体检——开放共享、匿名访问与权限风险
大数据·笔记·学习
caiyueloveclamp8 小时前
【功能介绍05】ChatPPT好不好用?如何用?用户操作手册来啦!——【AI辅写+分享篇】
人工智能·powerpoint·ai生成ppt·aippt·免费aippt
泽虞8 小时前
《STM32单片机开发》p7
笔记·stm32·单片机·嵌入式硬件
Aileen_0v08 小时前
【Gemini3.0的国内use教程】
android·人工智能·算法·开源·mariadb
xiaogutou11218 小时前
5款软件,让歌唱比赛海报设计更简单
人工智能
后端小张9 小时前
智眼法盾:基于Rokid AR眼镜的合同条款智能审查系统开发全解析
人工智能·目标检测·计算机视觉·ai·语言模型·ar·硬件架构