pytorch笔记:ReplicationPad1d

python 复制代码
torch.nn.ReplicationPad1d(padding)
  • 在 PyTorch 中,ReplicationPad1d 是一种用于一维数据的填充层
  • 该层通过复制序列的边缘值来增加数据的长度,这在卷积神经网络中常用于保持数据尺寸
  • 主要参数

|---------|-----------------------------------------------------------------------------------------------------|
| padding | 可以是一个整数或一个元组。 * 如果是一个整数,它表示在序列的每一端都填充相同数量的值。 * 如果是一个元组 (pad_left, pad_right),则分别在序列的左边和右边填充指定数量的值 |

  • 工作原理:

    • 假设有一个序列 [a, b, c, d],并且设置 padding=(2, 3),那么填充后的序列将是 [a, a, a, b, c, d, d, d, d]

    • 这里,左边的 a 被复制了两次,右边的 d 被复制了三次。

  • 举例:

python 复制代码
import torch
import torch.nn as nn

# 创建一维数据
data = torch.tensor([1, 2, 3, 4], dtype=torch.float32).unsqueeze(0).unsqueeze(0)  # shape: [1, 1, 4]

data,data.shape
#(tensor([[[1., 2., 3., 4.]]]), torch.Size([1, 1, 4]))




pad = nn.ReplicationPad1d((2, 3))

# 应用填充
padded_data = pad(data)

print(padded_data) 
#tensor([[[1., 1., 1., 2., 3., 4., 4., 4., 4.]]])
相关推荐
SEO_juper22 分钟前
生成式引擎优化(GEO)终极指南:优化品牌在对话式AI中的呈现与推荐
人工智能·chatgpt·seo·geo·数字营销
小程故事多_8036 分钟前
AI Agent进阶架构:用渐进式披露驯服复杂性
人工智能·架构
人工智能AI技术1 小时前
【Agent从入门到实践】10 决策模块:Agent如何“思考问题”
人工智能
qq_527887872 小时前
联邦经典算法Fedavg实现
人工智能·深度学习
天天讯通2 小时前
数据公司与AI五大主流合作模式
人工智能
Clarence Liu2 小时前
AI Agent开发(2) - 深入解析 A2A 协议与 Go 实战指南
开发语言·人工智能·golang
综合热讯2 小时前
AUS GLOBAL 荣耀赞助 2026 LIL TOUR 高尔夫嘉年华
人工智能
小饼干超人3 小时前
详解向量数据库中的PQ算法(Product Quantization)
人工智能·算法·机器学习
burning_maple3 小时前
redis笔记
数据库·redis·笔记
魔芋红茶3 小时前
Spring Security 学习笔记 4:用户/密码认证
笔记·学习·spring