⚠申明: 未经许可,禁止以任何形式转载,若要引用,请标注链接地址。 全文共计3077字,阅读大概需要3分钟
🌈更多学习内容, 欢迎👏关注👀【文末】我的个人微信公众号:不懂开发的程序猿
个人网站:https://jerry-jy.co/
❗❗❗知识付费,🈲止白嫖,有需要请后台私信或【文末】个人微信公众号联系我
语音识别--声音位置与起始位置检测
声音位置与起始位置检测
一、任务需求
在本实验中,我们将学习如何通过检测声音强度,来确定声音的位置,及起始位置。
声音(起始)位置检测非常重要,例如对声音样本进行剪辑等。
要求:利用librosa识别声音峰值位置和起始位置
二、任务目标
1、掌握声音峰值检测方法
2、掌握声音起始位置检测方法
三、任务环境
1、jupyter开发环境
2、python3.6
3、tensorflow2.4
四、任务实施过程
1、声音位置检测
首先要学习的是函数librosa.onset.onset_detect
,它通过在起始强度包络中挑选峰值来定位音符起始事件。
函数参数说明如下:
- y:音频时间序列
- sr:采样率
- onset_envelope:预先计算的起始强度包络(可选参数)
- units:编码检测到的起始事件的单位。默认情况下,使用"帧"。
- backtrack:是否将检测到的起始事件回溯到最近的先前能量最小值
加载工具和数据
python
import librosa
import numpy as np
python
import librosa.display
import matplotlib.pyplot as plt
python
import IPython.display as ipd
python
y, sr = librosa.load('/home/jovyan/datas/classic_rock_beat.wav')
python
ipd.Audio(y,rate=sr)
计算声音位置对应的帧
python
# 估计开始的帧数
onset_frames = librosa.onset.onset_detect(y, sr=sr)
print(onset_frames)
[ 20 29 38 57 66 75 84 93 103 112 121 131 140 149 158 167 176 185
196 204 213 232 241 250 260 269 278 288]
将帧转换为帧所对应的时间
python
onset_times = librosa.frames_to_time(onset_frames)
print(onset_times)
python
[0.46439909 0.67337868 0.88235828 1.32353741 1.53251701 1.7414966
1.95047619 2.15945578 2.39165533 2.60063492 2.80961451 3.04181406
3.25079365 3.45977324 3.66875283 3.87773243 4.08671202 4.29569161
4.55111111 4.73687075 4.94585034 5.38702948 5.59600907 5.80498866
6.03718821 6.2461678 6.45514739 6.68734694]
将声音转换为频谱图,并叠加声音位置
python
S = librosa.stft(y)
logS = librosa.amplitude_to_db(abs(S))
python
fig,ax = plt.subplots(nrows=2,sharex=True,figsize=(12,6))
librosa.display.specshow(logS,x_axis='time', y_axis='log',cmap='coolwarm',ax=ax[0])
ax[0].vlines(onset_times, 0, 10000, color='r')
ax[0].set_title('Spectrogram Show')
librosa.display.waveplot(y,ax=ax[1])
ax[1].vlines(onset_times, y.min(), y.max(), color='r')
ax[1].set_title('Wave Show')
Text(0.5, 1.0, 'Wave Show')
红色竖线对应了声音位置,无论频谱图还是波形图,声音检测位置都十分准确。
2、声音起始位置检测
接下来我们将使用librosa.onset.onset_backtrack
检测声音的起始位置,也称为回溯检测,本质是检测声音位置到最近的能量函数的前一个局部最小值。
该函数接收以下参数:
- events: 事件帧(声音位置帧)的索引列表,由
onset_detect
计算得到 - energy: 能量函数
接下来我们通过实验来学习如何寻找声音起始位置。
首先需要使用librosa.onset.onset_strength
获取声音的能量函数
然后使用librosa.onset.onset_backtrack
获取声音起始位置帧
python
oenv = librosa.onset.onset_strength(y=y, sr=sr)
onset_bt = librosa.onset.onset_backtrack(onset_frames, oenv)
python
plt.plot(oenv)
[<matplotlib.lines.Line2D at 0x7ff7cbe44d68>]
该图显示了声音在不同帧数的能量函数。
对频谱图强度做RMS均方根计算,得到频谱图的强度。
python
rms = librosa.feature.rms(S=S)
onset_bt_rms = librosa.onset.onset_backtrack(onset_frames, rms[0])
python
plt.plot(rms.T)
[<matplotlib.lines.Line2D at 0x7ff7cbdc4dd8>]
通过onset_backtrack
函数,我们计算得到音频强度对应的起始位置。
将帧转换为时间位置,方便绘图
python
onset_bt_rms_time = librosa.frames_to_time(onset_bt_rms)
将检测到的声音起始位置叠加在之前的librosa.onset.onset_detect
图上,方便比较二者的区别。
python
fig,ax = plt.subplots(nrows=2,sharex=True,figsize=(12,6))
librosa.display.specshow(logS,x_axis='time', y_axis='log',cmap='coolwarm',ax=ax[0])
ax[0].vlines(onset_times, 0, 10000, color='r',linestyle='--',linewidth=1,label='onset events')
ax[0].vlines(onset_bt_rms_time, 0, 10000, color='k',label='Backtrack detecte')
ax[0].set_title('Spectrogram Show')
ax[0].legend(bbox_to_anchor=(1.05, 1.0),loc='upper left')
librosa.display.waveplot(y,ax=ax[1])
ax[1].vlines(onset_times, y.min(), y.max(), color='r',linestyle='--',linewidth=1)
ax[1].vlines(onset_bt_rms_time, y.min(), y.max(), color='k')
ax[1].set_title('Wave Show')
Text(0.5, 1.0, 'Wave Show')
从图中可以看出,红色虚线是检测到的声音事件的峰值位置,黑色是声音事件的起始位置,这在频谱图上可以看的更清晰。如果要做声音样本剪切,可以选择黑色位置做为起始点,可以一定程度上避免人工剪切带来的缺点。
五、任务小结
本实验使用的函数包括librosa.onset.onset_detect
,librosa.onset.onset_backtrack
通过检测声音强度,来确定声音的位置,及起始位置。。通过本实验我们学习到了音频及其起始位置检测的相关知识,需要掌握以下知识点:
- librosa.onset.onset_detect检测声音峰值位置
- librosa.onset.onset_backtrack检测声音起始位置
--end--
说明
本实验(项目)/论文若有需要,请后台私信或【文末】个人微信公众号联系我