Python:Pandas删除特定行——dropna的用法

dropna() 是Pandas库中的一个非常实用的函数,用于处理缺失数据。它允许你从DataFrame或Series中删除含有缺失值(NaN,None等)的行或列。以下是**dropna()函数**的一些基本用法和参数介绍:

一、基本语法

python 复制代码
DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

参数解释

  • axis:指定删除操作是在行(0,默认值)还是列(1)。如果数据结构是一维的Series,这个参数会被忽略。

  • how:定义判断缺失值的标准。

    • 'any'(默认):只要某行/列包含任何一个NaN值,就删除该行/列。
    • 'all':仅当某行/列的所有值都是NaN时,才删除该行/列。
  • thresh:设置一个阈值,表示最少非NaN值的数量。只有当某行/列的非NaN值数量大于等于这个阈值时,才保留该行/列。

  • subset:指定考虑哪些列来进行缺失值检查。如果未提供,则检查整个DataFrame。

  • inplace:如果设置为True,将会直接在原始DataFrame上进行修改,而不是返回一个新的DataFrame。

二、示例

python 复制代码
# 假设我们有一个包含缺失值的DataFrame df
import pandas as pd
import numpy as np

data = {'A': [1, 2, np.nan, 4],
        'B': [5, np.nan, np.nan, 8],
        'C': [9, 10, 11, 12]}
df = pd.DataFrame(data)

# 删除任何含有缺失值的行
df_cleaned = df.dropna()

# 删除所有值都是缺失值的列
df_cleaned = df.dropna(axis=1, how='all')

# 删除C列以外,含有缺失值的行
df_cleaned = df.dropna(subset=['A', 'B'])

# 仅保留至少有2个非NaN值的行
df_cleaned = df.dropna(thresh=2)

# 直接在原DataFrame上操作
df.dropna(inplace=True)

参考官方文档

相关推荐
QMT量化交易2 分钟前
如何解决PyQt从主窗口打开新窗口时出现闪退的问题
python·pyqt
databook10 分钟前
『Plotly实战指南』--样式定制高级篇
python·数据分析·数据可视化
吴_知遇37 分钟前
【华为OD机试真题】428、连续字母长度 | 机试真题+思路参考+代码解析(E卷)(C++)
开发语言·c++·华为od
basketball6161 小时前
Python torchvision.transforms 下常用图像处理方法
开发语言·图像处理·python
兔子蟹子1 小时前
Java集合框架解析
java·windows·python
宁酱醇1 小时前
各种各样的bug合集
开发语言·笔记·python·gitlab·bug
啊吧怪不啊吧1 小时前
Linux常见指令介绍下(入门级)
linux·开发语言·centos
谷晓光1 小时前
Python 中 `r` 前缀:字符串处理的“防转义利器”
开发语言·python
姚毛毛1 小时前
Windows上,10分钟构建一个本地知识库
python·ai·rag
Tiger Z1 小时前
R 语言科研绘图第 41 期 --- 桑基图-基础
开发语言·r语言·贴图