Python:Pandas删除特定行——dropna的用法

dropna() 是Pandas库中的一个非常实用的函数,用于处理缺失数据。它允许你从DataFrame或Series中删除含有缺失值(NaN,None等)的行或列。以下是**dropna()函数**的一些基本用法和参数介绍:

一、基本语法

python 复制代码
DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

参数解释

  • axis:指定删除操作是在行(0,默认值)还是列(1)。如果数据结构是一维的Series,这个参数会被忽略。

  • how:定义判断缺失值的标准。

    • 'any'(默认):只要某行/列包含任何一个NaN值,就删除该行/列。
    • 'all':仅当某行/列的所有值都是NaN时,才删除该行/列。
  • thresh:设置一个阈值,表示最少非NaN值的数量。只有当某行/列的非NaN值数量大于等于这个阈值时,才保留该行/列。

  • subset:指定考虑哪些列来进行缺失值检查。如果未提供,则检查整个DataFrame。

  • inplace:如果设置为True,将会直接在原始DataFrame上进行修改,而不是返回一个新的DataFrame。

二、示例

python 复制代码
# 假设我们有一个包含缺失值的DataFrame df
import pandas as pd
import numpy as np

data = {'A': [1, 2, np.nan, 4],
        'B': [5, np.nan, np.nan, 8],
        'C': [9, 10, 11, 12]}
df = pd.DataFrame(data)

# 删除任何含有缺失值的行
df_cleaned = df.dropna()

# 删除所有值都是缺失值的列
df_cleaned = df.dropna(axis=1, how='all')

# 删除C列以外,含有缺失值的行
df_cleaned = df.dropna(subset=['A', 'B'])

# 仅保留至少有2个非NaN值的行
df_cleaned = df.dropna(thresh=2)

# 直接在原DataFrame上操作
df.dropna(inplace=True)

参考官方文档

相关推荐
情缘晓梦.11 分钟前
C语言指针进阶
java·开发语言·算法
世转神风-32 分钟前
qt-字符串版本与数值版本互转
开发语言·qt
极客代码1 小时前
深入解析C语言中的函数指针:原理、规则与实践
c语言·开发语言·指针·状态机·函数·函数指针
文言一心1 小时前
LINUX离线升级 Python 至 3.11.9 操作手册
linux·运维·python
w-w0w-w1 小时前
C++模板参数与特化全解析
开发语言·c++
诗词在线1 小时前
中国古代诗词名句按主题分类有哪些?(爱国 / 思乡 / 送别)
人工智能·python·分类·数据挖掘
不绝1911 小时前
C#核心:继承
开发语言·c#
高锰酸钾_1 小时前
机器学习-L1正则化和L2正则化解决过拟合问题
人工智能·python·机器学习
天天睡大觉2 小时前
Python学习11
网络·python·学习