Python:Pandas删除特定行——dropna的用法

dropna() 是Pandas库中的一个非常实用的函数,用于处理缺失数据。它允许你从DataFrame或Series中删除含有缺失值(NaN,None等)的行或列。以下是**dropna()函数**的一些基本用法和参数介绍:

一、基本语法

python 复制代码
DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

参数解释

  • axis:指定删除操作是在行(0,默认值)还是列(1)。如果数据结构是一维的Series,这个参数会被忽略。

  • how:定义判断缺失值的标准。

    • 'any'(默认):只要某行/列包含任何一个NaN值,就删除该行/列。
    • 'all':仅当某行/列的所有值都是NaN时,才删除该行/列。
  • thresh:设置一个阈值,表示最少非NaN值的数量。只有当某行/列的非NaN值数量大于等于这个阈值时,才保留该行/列。

  • subset:指定考虑哪些列来进行缺失值检查。如果未提供,则检查整个DataFrame。

  • inplace:如果设置为True,将会直接在原始DataFrame上进行修改,而不是返回一个新的DataFrame。

二、示例

python 复制代码
# 假设我们有一个包含缺失值的DataFrame df
import pandas as pd
import numpy as np

data = {'A': [1, 2, np.nan, 4],
        'B': [5, np.nan, np.nan, 8],
        'C': [9, 10, 11, 12]}
df = pd.DataFrame(data)

# 删除任何含有缺失值的行
df_cleaned = df.dropna()

# 删除所有值都是缺失值的列
df_cleaned = df.dropna(axis=1, how='all')

# 删除C列以外,含有缺失值的行
df_cleaned = df.dropna(subset=['A', 'B'])

# 仅保留至少有2个非NaN值的行
df_cleaned = df.dropna(thresh=2)

# 直接在原DataFrame上操作
df.dropna(inplace=True)

参考官方文档

相关推荐
叫我辉哥e12 小时前
### 技术文章大纲:C语言造轮子大赛
c语言·开发语言
Hgfdsaqwr3 小时前
Django全栈开发入门:构建一个博客系统
jvm·数据库·python
guygg883 小时前
NOMA功率分配与64 QAM调制中的SIC的MATLAB仿真
开发语言·matlab
开发者小天3 小时前
python中For Loop的用法
java·服务器·python
flushmeteor3 小时前
JDK源码-基础类-String
java·开发语言
老百姓懂点AI4 小时前
[RAG实战] 向量数据库选型与优化:智能体来了(西南总部)AI agent指挥官的长短期记忆架构设计
python
u0109272714 小时前
C++中的策略模式变体
开发语言·c++·算法
雨季6665 小时前
构建 OpenHarmony 简易文字行数统计器:用字符串分割实现纯文本结构感知
开发语言·前端·javascript·flutter·ui·dart
雨季6665 小时前
Flutter 三端应用实战:OpenHarmony 简易倒序文本查看器开发指南
开发语言·javascript·flutter·ui
进击的小头5 小时前
行为型模式:策略模式的C语言实战指南
c语言·开发语言·策略模式