Python:Pandas删除特定行——dropna的用法

dropna() 是Pandas库中的一个非常实用的函数,用于处理缺失数据。它允许你从DataFrame或Series中删除含有缺失值(NaN,None等)的行或列。以下是**dropna()函数**的一些基本用法和参数介绍:

一、基本语法

python 复制代码
DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

参数解释

  • axis:指定删除操作是在行(0,默认值)还是列(1)。如果数据结构是一维的Series,这个参数会被忽略。

  • how:定义判断缺失值的标准。

    • 'any'(默认):只要某行/列包含任何一个NaN值,就删除该行/列。
    • 'all':仅当某行/列的所有值都是NaN时,才删除该行/列。
  • thresh:设置一个阈值,表示最少非NaN值的数量。只有当某行/列的非NaN值数量大于等于这个阈值时,才保留该行/列。

  • subset:指定考虑哪些列来进行缺失值检查。如果未提供,则检查整个DataFrame。

  • inplace:如果设置为True,将会直接在原始DataFrame上进行修改,而不是返回一个新的DataFrame。

二、示例

python 复制代码
# 假设我们有一个包含缺失值的DataFrame df
import pandas as pd
import numpy as np

data = {'A': [1, 2, np.nan, 4],
        'B': [5, np.nan, np.nan, 8],
        'C': [9, 10, 11, 12]}
df = pd.DataFrame(data)

# 删除任何含有缺失值的行
df_cleaned = df.dropna()

# 删除所有值都是缺失值的列
df_cleaned = df.dropna(axis=1, how='all')

# 删除C列以外,含有缺失值的行
df_cleaned = df.dropna(subset=['A', 'B'])

# 仅保留至少有2个非NaN值的行
df_cleaned = df.dropna(thresh=2)

# 直接在原DataFrame上操作
df.dropna(inplace=True)

参考官方文档

相关推荐
数据智能老司机7 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
数据智能老司机8 小时前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机8 小时前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机8 小时前
精通 Python 设计模式——性能模式
python·设计模式·架构
c8i8 小时前
drf初步梳理
python·django
每日AI新事件8 小时前
python的异步函数
python
这里有鱼汤9 小时前
miniQMT下载历史行情数据太慢怎么办?一招提速10倍!
前端·python
databook18 小时前
Manim实现脉冲闪烁特效
后端·python·动效
程序设计实验室18 小时前
2025年了,在 Django 之外,Python Web 框架还能怎么选?
python
倔强青铜三20 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试