Concise CoT(CCoT)提示词工程

原文地址:concise-chain-of-thought-ccot-prompting

2024 年 1 月 24 日

传统的 CoT 是以增加输出令牌使用为代价的,CCoT 提示是一种提示工程技术,旨在减少 LLM 响应的冗长和推理时间。

基于LLMs的生成式人工智能应用程序必须使用多管齐下的方法进行优化。一种考虑提示结构、数据传递、令牌使用和推理延迟的方法。与LLM一起编排;使用最佳模型来完成最佳任务。以及用于数据发现、设计和开发的以数据为中心的方法。

介绍

最近的一项研究引入了一种新的提示技术,称为简洁思维链(CCoT)。

在本研究中,标准CoTCCoT提示在响应长度和准确性方面进行了比较。

对于多项选择问答,CCoT 将响应长度减少了48.70%。因此,CCoT 引入了输出tokens成本的节省和更简洁的答案。

研究还发现,CoTCCoT 两种方法的问题解决性能保持不变。

对于数学问题,CCoT 的性能损失为27.69%

总体而言,CCoT 使tokens成本平均降低了 22.67%。

思维链 (CoT)

CoT 已经成为LLMs 领域的一种现象,催生了大量基于 CoT 的提示技术。并引发了Chain-of-X现象。

对于某些问题任务和问题领域,CoT 提示已被证明可以将 LLM 性能提高高达80% 。

然而,这些性能改进是有代价的***,***即增加输出令牌使用量带来的额外费用。除此之外,推理时间也延长了。

来源

CoT 明确鼓励LLMs为解决问题提供中间推理。这是通过在演示中提供一系列推理步骤供LLMs模拟来实现的。

有关 CCoT 的更多信息

成本和延迟

如果 CCoT 减少响应长度,则 CCoT 可用于降低 LLM 成本。第三方 LLM API 通常按令牌定价,输出令牌比输入令牌更昂贵。

如下图所示,红色条表示输出tokens成本,与蓝色输入tokens成本相比。

来源
推理延迟也是一个挑战,可以通过确保响应更短来在一定程度上解决这个问题。这可以在不影响性能的情况下实现;研究发现,CCoT 在这方面不会带来性能损失。

实际比较

下面是仅回答提示的示例,后跟传统的详细 CoT 提示。最后是 CCoT 提示。

下面是仅限回答的提示。

来源

这里是详细和简洁的 CoT 提示之间的比较。

来源

可能的限制

该研究仅使用了 GPT LLM,了解开源和能力较差的 LLM 的表现将会很有趣。

该研究仅使用单一 CoT 和 CCoT 提示。因此,CoT 和 CCoT 提示的其他变体可能会产生不同的结果。

考虑到不同任务的提示性能差异,我想到了用户意图分类的实现可以很好地发挥作用。

对用户输入进行分类,以便协调多个 LLM、选择最合适的提示技术等。

附录

引入类似思维链方法的领域包括:

And more...

从最少到最多的提示可以与其他提示技术(例如思维链和自我一致性)结合起来。对于某些任务,可以将从最少到最多提示的两个阶段合并以形成单遍提示。 -来源

相关推荐
YF云飞42 分钟前
数据仓库进化:Agent驱动数智化新范式
数据仓库·人工智能·ai
ningmengjing_1 小时前
理解损失函数:机器学习的指南针与裁判
人工智能·深度学习·机器学习
程序猿炎义1 小时前
【NVIDIA AIQ】自定义函数实践
人工智能·python·学习
小陈phd1 小时前
高级RAG策略学习(四)——上下文窗口增强检索RAG
人工智能·学习·langchain
居然JuRan2 小时前
阿里云多模态大模型岗三面面经
人工智能
THMAIL2 小时前
深度学习从入门到精通 - BERT与预训练模型:NLP领域的核弹级技术详解
人工智能·python·深度学习·自然语言处理·性能优化·bert
nju_spy2 小时前
Kaggle - LLM Science Exam 大模型做科学选择题
人工智能·机器学习·大模型·rag·南京大学·gpu分布计算·wikipedia 维基百科
中國龍在廣州2 小时前
GPT-5冷酷操盘,游戏狼人杀一战封神!七大LLM狂飙演技,人类玩家看完沉默
人工智能·gpt·深度学习·机器学习·计算机视觉·机器人
东哥说-MES|从入门到精通2 小时前
Mazak MTF 2025制造未来参观总结
大数据·网络·人工智能·制造·智能制造·数字化
CodeCraft Studio2 小时前
Aspose.Words for .NET 25.7:支持自建大语言模型(LLM),实现更安全灵活的AI文档处理功能
人工智能·ai·语言模型·llm·.net·智能文档处理·aspose.word