神经网络与空间变换关系

神经网络的隐藏层实际上就是在进行一次空间变换,隐藏层中神经元的个数就是变换后空间的维度,代表可以升维也可以降维。

不同是 神经网络的一层运算不只有矩阵乘法,还会有一个加法。以及 进行完线性计算后,还要经过非线性的激活函数

  1. 与权重系数W相乘,相当于是乘以一个矩阵,进行和空间的旋转或者是拉伸变换,

​2. 加上偏置系数b,相当于对空间向量进行了一个平移操作

  1. 经过非线性的激活函数,让模型描述更复杂的情况,实现多对一(比如分类问题,如果将每张图片当作原空间的一个点,最后映射到新空间的一个点(猫))

隐藏层虽然有了更深的层,但是神经元的个数却在减少。

隐藏层越深,抽象程度越高

相关推荐
红衣小蛇妖1 分钟前
神经网络-Day45
人工智能·深度学习·神经网络
JoannaJuanCV17 分钟前
BEV和OCC学习-5:数据预处理流程
深度学习·目标检测·3d·occ·bev
KKKlucifer18 分钟前
当AI遇上防火墙:新一代智能安全解决方案全景解析
人工智能
DisonTangor1 小时前
【小红书拥抱开源】小红书开源大规模混合专家模型——dots.llm1
人工智能·计算机视觉·开源·aigc
浠寒AI3 小时前
智能体模式篇(上)- 深入 ReAct:LangGraph构建能自主思考与行动的 AI
人工智能·python
weixin_505154463 小时前
数字孪生在建设智慧城市中可以起到哪些作用或帮助?
大数据·人工智能·智慧城市·数字孪生·数据可视化
Best_Me073 小时前
深度学习模块缝合
人工智能·深度学习
YuTaoShao3 小时前
【论文阅读】YOLOv8在单目下视多车目标检测中的应用
人工智能·yolo·目标检测
算家计算4 小时前
字节开源代码模型——Seed-Coder 本地部署教程,模型自驱动数据筛选,让每行代码都精准落位!
人工智能·开源
伪_装4 小时前
大语言模型(LLM)面试问题集
人工智能·语言模型·自然语言处理