神经网络与空间变换关系

神经网络的隐藏层实际上就是在进行一次空间变换,隐藏层中神经元的个数就是变换后空间的维度,代表可以升维也可以降维。

不同是 神经网络的一层运算不只有矩阵乘法,还会有一个加法。以及 进行完线性计算后,还要经过非线性的激活函数

  1. 与权重系数W相乘,相当于是乘以一个矩阵,进行和空间的旋转或者是拉伸变换,

​2. 加上偏置系数b,相当于对空间向量进行了一个平移操作

  1. 经过非线性的激活函数,让模型描述更复杂的情况,实现多对一(比如分类问题,如果将每张图片当作原空间的一个点,最后映射到新空间的一个点(猫))

隐藏层虽然有了更深的层,但是神经元的个数却在减少。

隐藏层越深,抽象程度越高

相关推荐
Warren2Lynch4 小时前
利用 AI 协作优化软件更新逻辑:构建清晰的 UML 顺序图指南
人工智能·uml
ModelWhale5 小时前
当“AI+制造”遇上商业航天:和鲸助力头部企业,构建火箭研发 AI 中台
人工智能
ATMQuant5 小时前
量化指标解码13:WaveTrend波浪趋势 - 震荡行情的超买超卖捕手
人工智能·ai·金融·区块链·量化交易·vnpy
weixin_509138345 小时前
语义流形探索:大型语言模型中可控涌现路径的实证证据
人工智能·语义空间
soldierluo5 小时前
大模型的召回率
人工智能·机器学习
Gofarlic_oms15 小时前
Windchill用户登录与模块访问失败问题排查与许可证诊断
大数据·运维·网络·数据库·人工智能
童话名剑5 小时前
人脸识别(吴恩达深度学习笔记)
人工智能·深度学习·人脸识别·siamese网络·三元组损失函数
_YiFei5 小时前
2026年AIGC检测通关攻略:降ai率工具深度测评(含免费降ai率方案)
人工智能·aigc
GISer_Jing6 小时前
AI Agent 智能体系统:A2A通信与资源优化之道
人工智能·aigc
Dev7z6 小时前
基于深度学习的车辆分类方法研究与实现-填补国内新能源车型和品牌识别空白
深度学习·yolo