Jupyter notebook和 Jupyter lab内核死亡问题的原因和解决方案

写在前面:之前也遇到过几次内核死亡的问题,也一直没有想解决办法。这里总结一下并提出几个解决办法。

首先明确一下jupyter出现内核死亡的原因:jupyter lab 或者 jupyter notebook 本身是一个web服务, 无法支持高并发和频繁的计算任务,对于大规模运行或高并发是不够能力处理,所以机会内核死亡。所以如果平时也习惯用pycharm,移植代码到pycharm运行就没问题了。我是因为很少用pycharm,甚至都没装pycharm。

1. 使用causalml库时,在训练模型时出现内核死亡

这里是我在训练模型时输入的数据pandas格式的,一开始训练就内核死亡,后面换成numpy格式就没问题了。所以很多其他的库也许可以借鉴一下,如果内核死亡是不是可以换一下数据格式啥的。

2. 14万行数据,执行SMOTE算法内核死亡

最开始看到内核死亡,想的也是借鉴第一个情况,把数据转成numpy 或者 list格式,但是没有效果。

后面想到一个新法子,就是先将ipynb格式的文件转成py文件,然后通过命令行运行py文件。

python 复制代码
'''
在jupyte lab代码窗口,输入下面代码,就得到和ipynb格式同名的py文件
'''
! jupyter nbconvert --to script test.ipynb

在命令行窗口执行生成的同名py文件,就行了。

结果证明,可行!

3. 使用catboost时,调用gpu就内核崩溃

这个是我之前使用catboost模型时,如果设置task_type = 'GPU',训练模型就会内核死亡(数据量也不大)。当时没有想解决办法,直接放弃用该模型了。目前看来采用上面的提到转文件格式的方法,应该是没问题的。

4. 后记

前面提到,如果生成了同名的py文件,其实也可以直接在jupyter中执行下面的命令

python 复制代码
! python test.py

不就可以执行该py文件了么, 还不用打开命令行。(! 是魔法命令,相当于在当前环境下的命令行执行代码)

但是我操作了一下发现不行,会报告一个报错如下,这是一个线程的报错,但是我的电脑是两颗至强系列的cpu,这么点数据量不应该出现这个报错。

python 复制代码
OpenBLAS warning: precompiled NUM_THREADS exceeded, adding auxiliary array for thread metadata.

网上有解决办法说,在代码中添加如下代码就行(但我没成功)

python 复制代码
'''
这里的0就是你的第几块GPU,大部分只有一个。所以选择0就行
'''
import os
os.environ["CUDA_VISIBLE_DEVICES"] = '0'

=

相关推荐
科学创新前沿21 分钟前
机器学习催化剂设计专题学习
python·学习·机器学习·催化剂·催化剂设计
C嘎嘎嵌入式开发2 小时前
(六)机器学习之图卷积网络
人工智能·python·机器学习
DataLaboratory6 小时前
Python爬取百度地图-前端直接获取
爬虫·python·百度地图
Turnsole_y8 小时前
pycharm自动化测试初始化
python·selenium
weixin-a153003083169 小时前
[数据抓取-1]beautifulsoup
开发语言·python·beautifulsoup
AI量化投资实验室9 小时前
15年122倍,年化43.58%,回撤才20%,Optuna机器学习多目标调参backtrader,附python代码
人工智能·python·机器学习
倔强青铜三10 小时前
苦练Python第67天:光速读取任意行,linecache模块解锁文件处理新姿势
人工智能·python·面试
小韩博10 小时前
IDEA的简单使用
java·ide·intellij-idea
我是华为OD~HR~栗栗呀10 小时前
华为od-21届考研-C++面经
java·c语言·c++·python·华为od·华为·面试
明月(Alioo)10 小时前
机器学习入门,无监督学习之K-Means聚类算法完全指南:面向Java开发者的Python实现详解
python·算法·机器学习