决策树及其拓展 吴恩达课程

看到了个关于决策树很好的文章:链接

决策树

在所有可能的决策树中,选择一个在训练集上表现良好,并能很好的推广到新数据(即交叉验证集和测试集)的决策树。
参考文章


信息增益

信息增益越大,表示该特征对数据集划分所获得的"纯度提升"越大。所以信息增益可以用于决策树划分属性的选择,即选择信息增益最大 的属性。


关于信息增益的另一篇参考文章

构建决策树的过程

计算所有可能的信息增益,并选择最高的信息增益,根据选择的特征拆分数据集,并创建左右节点。继续递归调用以上拆分过程,直到达到阈值标准为止:

1.当某个节点的纯度为100%,即该节点的所有样本都属于一个类

2.当拆分节点后,导致树的深度超过最大深度

3.当拆分节点后,信息增益小于阈值时

4.当节点中的样本个数小于阈值时

参考文章

另一篇详细讲解构建决策树的文章

独热编码

独热编码用来解决 类别型数据的离散值问题

  • 优:独热编码解决了分类器不好处理属性数据的问题,在一定程度上也起到了扩充特征的作用。它的值只有0和1,不同的类型存储在垂直的空间。
  • 缺:当类别的数量很多时,特征空间会变得非常大。在这种情况下,一般可以用PCA来减少维度。而且one hot encoding+PCA这种组合在实际中也非常有用。
    独热编码详细解说

连续值处理

吴恩达讲解视频里是设定阈值。

另一篇文章不一样的方法:离散化策略------二分法

决策树不仅可以用来分类,也可以用于回归问题(连续的值):

参考文章
分类树与回归树的区别

从根节点开始,一步一步划分,直到到达叶子节点,最后输出预测特征值

决策树集合

单个决策树可能会对数据的微小变化高度敏感,即鲁棒性(意思稳定性差)很差。所以使用多个决策树。

对每个决策树分别进行预测,最后统计结果,选择多数的结果作为最终预测结果。
参考文章

相关推荐
你的冰西瓜1 小时前
2026春晚魔术揭秘——变魔法为物理
算法
lisw052 小时前
组合AI的核心思路与应用!
人工智能·科技·机器学习
忘梓.2 小时前
解锁动态规划的奥秘:从零到精通的创新思维解析(10)
c++·算法·动态规划·代理模式
foolish..2 小时前
动态规划笔记
笔记·算法·动态规划
消失的dk2 小时前
算法---动态规划
算法·动态规划
羑悻的小杀马特2 小时前
【动态规划篇】欣赏概率论与镜像法融合下,别出心裁探索解答括号序列问题
c++·算法·蓝桥杯·动态规划·镜像·洛谷·空隙法
绍兴贝贝2 小时前
代码随想录算法训练营第四十六天|LC647.回文子串|LC516.最长回文子序列|动态规划总结
数据结构·人工智能·python·算法·动态规划·力扣
愚润求学2 小时前
【动态规划】二维的背包问题、似包非包、卡特兰数
c++·算法·leetcode·动态规划
救赎小恶魔2 小时前
C++算法(5)
java·c++·算法
叫我一声阿雷吧2 小时前
【信奥赛基础】动态规划:小学生也能懂的必考算法入门
算法·动态规划