微调(fine-tuning)和泛化(generalization)

主要讨论两个主要方面:微调(fine-tuning)和泛化(generalization)。

文章目录

  • [微调 Fine-tune](#微调 Fine-tune)
  • [泛化 Generalization](#泛化 Generalization)

微调 Fine-tune

对于微调:选择合理的步骤(也就是迭代轮数或称为epochs),以获得良好的下游任务性能,但同时避免过拟合。微调是指在一个已经在大规模数据上预训练好的模型的基础上,针对特定任务领域的数据进行调整(微调)以提高性能。在选择微调步骤时,需要考虑到数据集本身的特点,以确保在不过拟合的情况下获得良好的性能。

泛化 Generalization

对于泛化:可以采用模型集成技术,例如 WISE-FT 来平衡微调模型和预训练模型之间的权重。泛化能力指的是模型在未见过的数据上表现良好的能力。模型集成通过组合多个不同的模型来提高整体性能,WISE-FT 是其中一种模型集成技术。它可以平衡微调后的模型和预训练模型之间的权重,从而提高模型的泛化能力。

OWL-V2 是目前最强大的开放集对象检测(OVD)模型之一,它也使用了这种模型集成技巧。这意味着即使是在最强大的模型中,也可以通过模型集成来进一步提高性能和泛化能力。

相关推荐
Hody9113 分钟前
【XR硬件系列】夸克 AI 眼镜预售背后:阿里用 “硬件尖刀 + 生态护城河“ 重构智能穿戴逻辑
人工智能·重构
Icoolkj15 分钟前
RAGFlow与Dify知识库:对比选型与技术落地解析
人工智能
终端域名19 分钟前
转折·融合·重构——2025十大新兴技术驱动系统变革与全球挑战应对
人工智能·重构
FreeCode21 分钟前
LangChain1.0智能体开发:中间件(Middleware)
人工智能·langchain·agent
黑黑的脸蛋22 分钟前
Cursor 自动化批量修改大量代码场景
人工智能·程序员
智启七月42 分钟前
从 token 到向量:微信 CALM 模型颠覆大语言模型范式
人工智能·深度学习
Khunkin43 分钟前
基于几何直觉理解牛顿迭代法
机器学习
老纪的技术唠嗑局44 分钟前
AI 时代的数据库进化论 —— 从向量到混合检索
人工智能
Better Bench1 小时前
【大模型RAG安全基准】安装和使用SafaRAG框架
网络·人工智能·安全·大模型·组件·rag
大千AI助手1 小时前
差分隐私:机器学习和数据发布中的隐私守护神
人工智能·神经网络·机器学习·dp·隐私保护·差分隐私·大千ai助手