微调(fine-tuning)和泛化(generalization)

主要讨论两个主要方面:微调(fine-tuning)和泛化(generalization)。

文章目录

  • [微调 Fine-tune](#微调 Fine-tune)
  • [泛化 Generalization](#泛化 Generalization)

微调 Fine-tune

对于微调:选择合理的步骤(也就是迭代轮数或称为epochs),以获得良好的下游任务性能,但同时避免过拟合。微调是指在一个已经在大规模数据上预训练好的模型的基础上,针对特定任务领域的数据进行调整(微调)以提高性能。在选择微调步骤时,需要考虑到数据集本身的特点,以确保在不过拟合的情况下获得良好的性能。

泛化 Generalization

对于泛化:可以采用模型集成技术,例如 WISE-FT 来平衡微调模型和预训练模型之间的权重。泛化能力指的是模型在未见过的数据上表现良好的能力。模型集成通过组合多个不同的模型来提高整体性能,WISE-FT 是其中一种模型集成技术。它可以平衡微调后的模型和预训练模型之间的权重,从而提高模型的泛化能力。

OWL-V2 是目前最强大的开放集对象检测(OVD)模型之一,它也使用了这种模型集成技巧。这意味着即使是在最强大的模型中,也可以通过模型集成来进一步提高性能和泛化能力。

相关推荐
神州问学2 分钟前
每周技术加速器:UltraRAG:突破传统RAG架构的创新与实践
人工智能
小喵要摸鱼9 分钟前
深度强化学习 Deep Q-learning:把深度学习引入强化学习
深度学习·强化学习
GitCode官方12 分钟前
YOLO11 与 Wan2.2‑I2V‑A14B 正式上线 AtomGit AI:开启视觉感知与动态生成新纪元!
人工智能·计算机视觉·目标跟踪·开源·atomgit
deephub15 分钟前
机器学习时间特征处理:循环编码(Cyclical Encoding)与其在预测模型中的应用
人工智能·python·机器学习·特征工程·时间序列
Gofarlic_oms116 分钟前
集中式 vs 分布式许可:跨地域企业的管控架构选择
大数据·运维·人工智能·分布式·架构·数据挖掘·需求分析
机器学习之心19 分钟前
科研绘图 | PSO-LSTM粒子群优化长短期记忆神经网络模型结构图
人工智能·神经网络·lstm·pso-lstm
meizisay22 分钟前
亿可达_自动发邮件攻略
人工智能·经验分享·低代码·职场和发展·自动化
褪色的博客25 分钟前
强化学习入门:核心概念与数学基础详解
人工智能
遥感学习森27 分钟前
滑雪场分布API及滑雪预报服务API
大数据·人工智能·天气api
code bean29 分钟前
【AI】RAG智能问答的三层优化策略
大数据·人工智能·rag