微调(fine-tuning)和泛化(generalization)

主要讨论两个主要方面:微调(fine-tuning)和泛化(generalization)。

文章目录

  • [微调 Fine-tune](#微调 Fine-tune)
  • [泛化 Generalization](#泛化 Generalization)

微调 Fine-tune

对于微调:选择合理的步骤(也就是迭代轮数或称为epochs),以获得良好的下游任务性能,但同时避免过拟合。微调是指在一个已经在大规模数据上预训练好的模型的基础上,针对特定任务领域的数据进行调整(微调)以提高性能。在选择微调步骤时,需要考虑到数据集本身的特点,以确保在不过拟合的情况下获得良好的性能。

泛化 Generalization

对于泛化:可以采用模型集成技术,例如 WISE-FT 来平衡微调模型和预训练模型之间的权重。泛化能力指的是模型在未见过的数据上表现良好的能力。模型集成通过组合多个不同的模型来提高整体性能,WISE-FT 是其中一种模型集成技术。它可以平衡微调后的模型和预训练模型之间的权重,从而提高模型的泛化能力。

OWL-V2 是目前最强大的开放集对象检测(OVD)模型之一,它也使用了这种模型集成技巧。这意味着即使是在最强大的模型中,也可以通过模型集成来进一步提高性能和泛化能力。

相关推荐
Wnq1007218 小时前
世界模型 AI:认知跃迁的可行性与本质性挑战
人工智能
穷人小水滴18 小时前
科幻 「备用肉身虫」 系列设定集 (AI 摘要)
人工智能·aigc·科幻·未来·小说·设定
老赵聊算法、大模型备案18 小时前
北京市生成式人工智能服务已备案信息公告(2025年12月11日)
人工智能·算法·安全·aigc
咬人喵喵18 小时前
上下文窗口:AI 的“大脑容量”
人工智能
workflower18 小时前
时序数据获取事件
开发语言·人工智能·python·深度学习·机器学习·结对编程
weixin_4461224618 小时前
一个案例验证 LLM大模型编码能力哪家强
人工智能
老蒋新思维19 小时前
创客匠人峰会深度解析:知识变现的 “信任 - 效率” 双闭环 —— 从 “单次交易” 到 “终身复购” 的增长密码
大数据·网络·人工智能·tcp/ip·重构·数据挖掘·创客匠人
java1234_小锋19 小时前
Transformer 大语言模型(LLM)基石 - Transformer架构详解 - 编码器(Encoder)详解以及算法实现
深度学习·语言模型·transformer
大刘讲IT19 小时前
面向中小企业的企业AI Agent未来3年构建蓝图规划
人工智能·经验分享·ai·开源·制造
yzx99101319 小时前
深度学习的进化之路:从感知机到通用智能的曙光
人工智能·深度学习