微调(fine-tuning)和泛化(generalization)

主要讨论两个主要方面:微调(fine-tuning)和泛化(generalization)。

文章目录

  • [微调 Fine-tune](#微调 Fine-tune)
  • [泛化 Generalization](#泛化 Generalization)

微调 Fine-tune

对于微调:选择合理的步骤(也就是迭代轮数或称为epochs),以获得良好的下游任务性能,但同时避免过拟合。微调是指在一个已经在大规模数据上预训练好的模型的基础上,针对特定任务领域的数据进行调整(微调)以提高性能。在选择微调步骤时,需要考虑到数据集本身的特点,以确保在不过拟合的情况下获得良好的性能。

泛化 Generalization

对于泛化:可以采用模型集成技术,例如 WISE-FT 来平衡微调模型和预训练模型之间的权重。泛化能力指的是模型在未见过的数据上表现良好的能力。模型集成通过组合多个不同的模型来提高整体性能,WISE-FT 是其中一种模型集成技术。它可以平衡微调后的模型和预训练模型之间的权重,从而提高模型的泛化能力。

OWL-V2 是目前最强大的开放集对象检测(OVD)模型之一,它也使用了这种模型集成技巧。这意味着即使是在最强大的模型中,也可以通过模型集成来进一步提高性能和泛化能力。

相关推荐
迈火5 分钟前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Moshow郑锴1 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
CareyWYR2 小时前
每周AI论文速递(250811-250815)
人工智能
AI精钢2 小时前
H20芯片与中国的科技自立:一场隐形的博弈
人工智能·科技·stm32·单片机·物联网
whaosoft-1432 小时前
51c自动驾驶~合集14
人工智能
C++、Java和Python的菜鸟2 小时前
第六章 统计初步
算法·机器学习·概率论
Jinkxs2 小时前
自动化测试的下一站:AI缺陷检测工具如何实现“bug提前预警”?
人工智能·自动化
小幽余生不加糖2 小时前
电路方案分析(二十二)适用于音频应用的25-50W反激电源方案
人工智能·笔记·学习·音视频
柠檬味拥抱3 小时前
优化AI智能体行为:Q学习、深度Q网络与动态规划在复杂任务中的研究
人工智能
玄明Hanko3 小时前
程序员如何使用 cursor 写代码?
人工智能