【MATLAB源码-第56期】基于WOA白鲸优化算法和PSO粒子群优化算法的三维路径规划对比。

操作环境:

MATLAB 2022a

1 、算法描述

1.粒子群算法(Particle Swarm Optimization,简称PSO)是一种模拟鸟群觅食行为的启发式优化方法。以下是其详细描述:

基本思想:

鸟群在寻找食物时,每只鸟都会观察自己和其他鸟之间的距离,以及当前找到的食物的位置。每只鸟都会向自己历史上找到的最好食物位置和整个群体找到的最好食物位置飞翔。通过这种方式,鸟群可以在一定范围内快速找到食物。

算法流程:

  1. 初始化:随机生成一个粒子群,每个粒子表示在解空间中的一个潜在解。

  2. 评估:为每个粒子设定一个初始位置和速度,并计算它的适应度值。

  3. 更新速度和位置:

  • 对每个粒子,根据以下公式更新其速度:

​2.白鲸优化算法(Whale Optimization Algorithm, WOA)是一种模拟白鲸捕食行为的优化算法,由Mirjalili和Lewis于2016年提出。这种算法受到白鲸独特的捕食策略------螺旋式逼近猎物和围捕的启发。算法的基本思想是通过模拟白鲸的这两种捕食行为来寻找问题的最优解。

算法描述

初始化

算法开始时,随机生成一群白鲸个体,每个个体代表问题空间中的一个可能解。每个个体的位置由一个向量表示。

搜索猎物

白鲸通过两种策略搜索猎物(即寻找最优解):

  1. 围捕策略:白鲸根据当前最优解的位置来更新自己的位置。这是通过以下公式来实现的:

2、仿真结果演示

3 、关键代码展示

4 、MATLAB 源码获取

点击下方原文链接获取

【MATLAB源码-第56期】基于WOA白鲸优化算法和PSO粒子群优化算法的三维路径规划对比。_白鲸优化算法对比测试-CSDN博客https://blog.csdn.net/Koukesuki/article/details/134023769?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522171559289516800197013984%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=171559289516800197013984&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-1-134023769-null-null.nonecase&utm_term=56&spm=1018.2226.3001.4450

相关推荐
忘梓.1 小时前
解锁动态规划的奥秘:从零到精通的创新思维解析(3)
算法·动态规划
Evand J1 小时前
LOS/NLOS环境建模与三维TOA定位,MATLAB仿真程序,可自定义锚点数量和轨迹点长度
开发语言·matlab
LucianaiB1 小时前
探索CSDN博客数据:使用Python爬虫技术
开发语言·爬虫·python
Ronin3051 小时前
11.vector的介绍及模拟实现
开发语言·c++
计算机学长大白2 小时前
C中设计不允许继承的类的实现方法是什么?
c语言·开发语言
PieroPc3 小时前
Python 写的 智慧记 进销存 辅助 程序 导入导出 excel 可打印
开发语言·python·excel
tinker在coding3 小时前
Coding Caprice - Linked-List 1
算法·leetcode
2401_857439695 小时前
SSM 架构下 Vue 电脑测评系统:为电脑性能评估赋能
开发语言·php
孤亭远见5 小时前
COMSOL with Matlab
matlab
SoraLuna6 小时前
「Mac畅玩鸿蒙与硬件47」UI互动应用篇24 - 虚拟音乐控制台
开发语言·macos·ui·华为·harmonyos