基于MetaGPT的智能体理论与实践-Task01

Task01: MetaGPT环境配置

学习教程:https://github.com/datawhalechina/hugging-multi-agent

1 环境准备

1.1 安装python3.9+

通过:python3 --version, 查看此python版本为3.10.3

1.2 下载MetaGPT

开始,借用清华镜像,拉取metagpt==0.6.6,失败。

然后直接用pip install metagpt==0.6.6 进行下载与安装。

1.3 获取MetaGPT仓库源码

首先git clone命令获取源码

bash 复制代码
git clone https://github.com/geekan/MetaGPT.git

然后进入 MetaGPT 目录

bash 复制代码
cd MetaGPT/

最后安装该仓库环境依赖

bash 复制代码
pip install -e .

2 配置MetaGPT

下面使用ZHIPUAI为例,来MetaGPT

首先,需要在https://open.bigmodel.cn/ 获取智谱的api_key。

然后使用config.yaml文件进行配置。

在MetaGPT/config/ 文件下,创建config.yaml文件,然后在文件中,添加如下配置信息。

bash 复制代码
llm:
  api_type: "zhipuai"  
  model: "glm-3-turbo"  
  base_url: "https://open.bigmodel.cn/api/paas/v4/chat/completions"  
  api_key: "your api_key"

3 DEMO测试

异步相关的代码在ipython或者notebook环境下,asyncio.run(xxx)得改成await xxx

eg:asyncio.run(main())需要改成await main()

代码中创建了两个角色,分别代表民主党候选人Alex和共和党候选人Bob。他们将在一个名为"US election live broadcast"的环境中进行对话。您的代码还定义了两个动作,分别是"AlexSay"和"BobSay",以及一个团队,其中包括了这两个角色。目标是模拟两位候选人在直播环境中就气候变化这一话题进行对话。这将有助于模拟候选人在现实选举中的表现和对话。

python 复制代码
import asyncio

from metagpt.actions import Action
from metagpt.environment import Environment
from metagpt.roles import Role
from metagpt.team import Team

action1 = Action(name="AlexSay", instruction="Express your opinion with emotion and don't repeat it")
action2 = Action(name="BobSay", instruction="Express your opinion with emotion and don't repeat it")
alex = Role(name="Alex", profile="Democratic candidate", goal="Win the election", actions=[action1], watch=[action2])
bob = Role(name="Bob", profile="Republican candidate", goal="Win the election", actions=[action2], watch=[action1])
env = Environment(desc="US election live broadcast")
team = Team(investment=10.0, env=env, roles=[alex, bob])

asyncio.run(team.run(idea="Topic: climate change. Under 80 words per message.", send_to="Alex", n_round=5))

由于,这里使用的notebook,所以把上面代码最后一行改成:

python 复制代码
await team.run(idea="Topic: climate change. Under 80 words per message.", send_to="Alex", n_round=5)
相关推荐
前路不黑暗@8 小时前
Java:继承与多态
java·开发语言·windows·经验分享·笔记·学习·学习方法
第七序章8 小时前
【C + +】C++11 (下) | 类新功能 + STL 变化 + 包装器全解析
c语言·数据结构·c++·人工智能·哈希算法·1024程序员节
FriendshipT8 小时前
图像生成:PyTorch从零开始实现一个简单的扩散模型
人工智能·pytorch·python
格林威9 小时前
AOI在化学药剂检测领域中的应用
人工智能·数码相机·计算机视觉·目标跟踪·视觉检测·制造·机器视觉
mit6.8249 小时前
[DeepOCR] 生成控制 | NoRepeatNGramLogitsProcessor | 配置`SamplingParams`
人工智能·深度学习·机器学习
糖炒狗子9 小时前
基于 OpenVINO 实现 SpeechT5 语音合成模型本地部署加速
人工智能·ai·语音合成·openvino
Theodore_10229 小时前
深度学习(10)模型评估、训练与选择
人工智能·深度学习·算法·机器学习·计算机视觉
CV炼丹术9 小时前
NeurIPS 2025 | 港中文提出COS3D:多模态融合语言与分割,创造开放词汇3D分割新范式!
人工智能·计算机视觉·neurips 2025
上海蓝色星球9 小时前
基于3DGIS+BIM的智慧园区运维平台价值分享
运维·人工智能·3d
五条凪9 小时前
Verilog-Eval-v1基准测试集搭建指南
开发语言·人工智能·算法·语言模型