【OpenCV】像素信息统计

介绍了计算像素均值、方差的API,以及统计像素信息的方法。相关API:

  • minMaxLoc()
  • mean()
  • meanStdDev()

代码:

cpp 复制代码
#include "iostream"
#include "opencv2/opencv.hpp"

using namespace std;
using namespace cv;

int main(int argc, char *argv)
{
	//【单通道图像,均值】
	Mat src = imread("C:/Users/Administrator/Desktop/Zooey.png",IMREAD_GRAYSCALE);
	if (src.empty())
	{
		cout << "could not find image file" << endl;
		return -1;
	}
	imshow("灰度原图", src);
	//获取图片相关信息,并打印
	int w = src.cols;
	int h = src.rows;
	int ch = src.channels();
	cout << "w:" << w << "	h:" << h << "	ch:" << ch << endl;
	//求最大最小像素值,最大最小像素点
	double min_value;
	double max_value;
	Point minloc;
	Point maxloc;
	minMaxLoc(src, &min_value, &max_value, &minloc, &maxloc);	//取最小最大API,最后一个参数mask,在这里是限制寻找范围。注:只支持单通道。
	printf("min_value:%.2f	max_value:%.2f\n", min_value, max_value);	//像素值
	cout << "minloc:" << minloc.x << "," << minloc.y << "	maxloc:" << maxloc.x << "," << maxloc.y << endl;	//像素点
	//求均值
	Scalar s = mean(src);	//均值API
	printf("mean:%.2f\n", s[0]);//如果是彩色图像,则对应三个通道,s[0]s[1]s[2]。

	//【三通道彩色图像,均值、方差】
	Mat src1 = imread("C:/Users/Administrator/Desktop/Zooey.png", IMREAD_COLOR);
	if (src.empty())
	{
		cout << "could not find image file" << endl;
		return -1;
	}
	imshow("彩色原图", src1);
	Mat mm, mstd;
	meanStdDev(src1, mm, mstd);	//均值、方差API,第一个参数是原图,第二个参数是均值,第三个参数是方差。
	printf("stddev:%.2f	%.2f	%.2f\n", mstd.at<double>(0, 0), mstd.at<double>(1, 0), mstd.at<double>(2, 0));	//打印三个通道的方差,单通道只有0,0
	cout << "mm:" << mm.at<double>(0, 0) << "   " << mm.at<double>(1, 0) << "   " << mm.at<double>(2, 0) << endl;	//打印三个通道的均值,单通道只有0,0

	//【像素值统计信息,即统计某一像素数值有多少个】
	vector<int> hist(256);	//创建一个vector容器,C++知识
	for (int i = 0; i < 256; i++)
	{
		hist[i] = 0;
	}
	for (int row = 0; row < h; row++)
	{
		for (int col = 0; col < w; col++)
		{
			int pv = src.at<uchar>(row, col);
			hist[pv]++;
		}
	}
		
	waitKey(0);
	destroyAllWindows();
	return 0;
}

内容都在注释里讲得很清楚了。注意有些API只适用于单通道。

还要注意meanStdDev()返回的对象是Mat类型,以及如何通过这个Mat对象获取我们想要的信息。

第三部分像素统计,是统计某一像素值在一幅图片中有多少个。像素值0-255总共256个,所以创建一个大小为256的vector,将像素值作为下标,其对应的值作为出现次数,没遍历到一个像素值,就在这个值作为下标的位置+1进行累加,最后就可以知道这个像素值总共出现了多少次。

小应用。方差代表波动,纯色图像的方差为0,可以以此来识别纯色图像。

演示:

相关推荐
陈天伟教授6 分钟前
基于学习的人工智能(7)机器学习基本框架
人工智能·学习
千里念行客24035 分钟前
昂瑞微正式启动科创板IPO发行
人工智能·科技·信息与通信·射频工程
撸码猿1 小时前
《Python AI入门》第10章 拥抱AIGC——OpenAI API调用与Prompt工程实战
人工智能·python·aigc
双翌视觉1 小时前
双翌全自动影像测量仪:以微米精度打造智能化制造
人工智能·机器学习·制造
编程小白_正在努力中2 小时前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习
无风听海2 小时前
神经网络之经验风险最小化
人工智能·深度学习·神经网络
音视频牛哥2 小时前
轻量级RTSP服务的工程化设计与应用:从移动端到边缘设备的实时媒体架构
人工智能·计算机视觉·音视频·音视频开发·rtsp播放器·安卓rtsp服务器·安卓实现ipc功能
该用户已不存在3 小时前
在 Gemini CLI 中使用 Gemini 3 Pro 实操指南
人工智能·ai编程·gemini
东皇太星3 小时前
ResNet (2015)(卷积神经网络)
人工智能·神经网络·cnn
aircrushin3 小时前
TRAE SOLO 中国版,正式发布!AI 编程的 "Solo" 时代来了?
前端·人工智能