ARM鲲鹏920-oe2309-caffe

参考链接:Caffe | Installation

安装依赖包

dnf install

复制代码
dnf update
dnf install leveldb-devel snappy-devel opencv.aarch64 boost-devel hdf5-devel gflags-devel glog-devel lmdb-devel openblas.aarch64
dnf install git wget tar gcc-g++ unzip automake libtool autoconf

从源码编译安装protobuf

问题:

编译caffe需要用到protobuf,通过dnf install protobuf-devel可以获得3.19版本,但在后续编译caffe时会出现下图报错。报错原因:https://github.com/onnx/onnx/issues/2678,故而需要安装3.6~3.10版本的protobuf。

安装:

复制代码
git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout 3.9.x
./autogen.sh
./configure --prefix=/home/caffe/file/protobuf-install
make -j16
make install -j16
export PROTOBUF="/home/caffe/file/protobuf-install"
export PATH="$PROTOBUF/bin:$PATH"
export LD_LIBRARY_PATH="$PROTOBUF/lib:$LD_LIBRARY_PATH"
protoc --version

如果出现了版本号,则证明安装成功

安装caffe

复制代码
git clone https://github.com/BVLC/caffe.git
cd caffe
cp Makefile.config.example Makefile.config
vi Makefile.config
  1. 选择 cpu-only 模式: 将第8行CPU_ONLY := 1取消注释
  2. 选择 BLAS 将第53行BLAS := atlas 改为BLAS := open
  3. 修改 INCLUDE 路径: 将第97行INCLUDE_DIRS := (PYTHON_INCLUDE) /usr/local/include* 改为*INCLUDE_DIRS := (PYTHON_INCLUDE) /usr/local/include /usr/include/opencv4 /usr/include/openblas /home/caffe/file/protobuf-install/include
  4. 修改 LIBRARY 路径: 将第98行LIBRARY_DIRS := (PYTHON_LIB) /usr/local/lib /usr/lib* 改为*LIBRARY_DIRS := (PYTHON_LIB) /usr/local/lib /usr/lib /home/caffe/file/protobuf-install/lib
  5. 添加 LIBRARIES 在第98行后面添加一行LIBRARIES += opencv_core opencv_highgui opencv_imgproc opencv_imgcodecs opencv_videoio

在caffe路径下运行下面命令:

复制代码
sed -i 's/CV_LOAD_IMAGE_COLOR/cv::IMREAD_COLOR/g' src/caffe/layers/window_data_layer.cpp
sed -i 's/CV_LOAD_IMAGE_COLOR/cv::IMREAD_COLOR/g' src/caffe/util/io.cpp
sed -i 's/CV_LOAD_IMAGE_GRAYSCALE/cv::ImreadModes::IMREAD_GRAYSCALE/g' src/caffe/util/io.cpp
sed -i 's/CV_LOAD_IMAGE_COLOR/cv::IMREAD_COLOR/g' src/caffe/test/test_io.cpp
sed -i 's/CV_LOAD_IMAGE_GRAYSCALE/cv::ImreadModes::IMREAD_GRAYSCALE/g' src/caffe/test/test_io.cpp
make all -j16
make test -j16
make runtest -j16
export CAFFE="/home/caffe/file/caffe"
export PATH="$CAFFE/build/tools:$PATH"
caffe --version

如果出现了版本号,则证明安装成功

相关推荐
何大春6 分钟前
【视频时刻检索】Text-Video Retrieval via Multi-Modal Hypergraph Networks 论文阅读
论文阅读·深度学习·神经网络·计算机视觉·视觉检测·论文笔记
mucheni8 分钟前
迅为iTOP-RK3576开发板/核心板6TOPS超强算力NPU适用于ARM PC、边缘计算、个人移动互联网设备及其他多媒体产品
arm开发·人工智能·边缘计算
Jamence8 分钟前
多模态大语言模型arxiv论文略读(三十六)
人工智能·语言模型·自然语言处理
猿饵块20 分钟前
opencv--图像变换
人工智能·opencv·计算机视觉
LucianaiB28 分钟前
【金仓数据库征文】_AI 赋能数据库运维:金仓KES的智能化未来
运维·数据库·人工智能·金仓数据库 2025 征文·数据库平替用金仓
jndingxin42 分钟前
OpenCV 图形API(63)图像结构分析和形状描述符------计算图像中非零像素的边界框函数boundingRect()
人工智能·opencv·计算机视觉
旧故新长1 小时前
支持Function Call的本地ollama模型对比评测-》开发代理agent
人工智能·深度学习·机器学习
微学AI1 小时前
融合注意力机制和BiGRU的电力领域发电量预测项目研究,并给出相关代码
人工智能·深度学习·自然语言处理·注意力机制·bigru
知来者逆1 小时前
计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解
图像处理·人工智能·深度学习·算法·目标检测·计算机视觉·rf-detr
一勺汤1 小时前
YOLOv11改进-双Backbone架构:利用双backbone提高yolo11目标检测的精度
人工智能·yolo·双backbone·double backbone·yolo11 backbone·yolo 双backbone