ARM鲲鹏920-oe2309-caffe

参考链接:Caffe | Installation

安装依赖包

dnf install

复制代码
dnf update
dnf install leveldb-devel snappy-devel opencv.aarch64 boost-devel hdf5-devel gflags-devel glog-devel lmdb-devel openblas.aarch64
dnf install git wget tar gcc-g++ unzip automake libtool autoconf

从源码编译安装protobuf

问题:

编译caffe需要用到protobuf,通过dnf install protobuf-devel可以获得3.19版本,但在后续编译caffe时会出现下图报错。报错原因:https://github.com/onnx/onnx/issues/2678,故而需要安装3.6~3.10版本的protobuf。

安装:

复制代码
git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout 3.9.x
./autogen.sh
./configure --prefix=/home/caffe/file/protobuf-install
make -j16
make install -j16
export PROTOBUF="/home/caffe/file/protobuf-install"
export PATH="$PROTOBUF/bin:$PATH"
export LD_LIBRARY_PATH="$PROTOBUF/lib:$LD_LIBRARY_PATH"
protoc --version

如果出现了版本号,则证明安装成功

安装caffe

复制代码
git clone https://github.com/BVLC/caffe.git
cd caffe
cp Makefile.config.example Makefile.config
vi Makefile.config
  1. 选择 cpu-only 模式: 将第8行CPU_ONLY := 1取消注释
  2. 选择 BLAS 将第53行BLAS := atlas 改为BLAS := open
  3. 修改 INCLUDE 路径: 将第97行INCLUDE_DIRS := (PYTHON_INCLUDE) /usr/local/include* 改为*INCLUDE_DIRS := (PYTHON_INCLUDE) /usr/local/include /usr/include/opencv4 /usr/include/openblas /home/caffe/file/protobuf-install/include
  4. 修改 LIBRARY 路径: 将第98行LIBRARY_DIRS := (PYTHON_LIB) /usr/local/lib /usr/lib* 改为*LIBRARY_DIRS := (PYTHON_LIB) /usr/local/lib /usr/lib /home/caffe/file/protobuf-install/lib
  5. 添加 LIBRARIES 在第98行后面添加一行LIBRARIES += opencv_core opencv_highgui opencv_imgproc opencv_imgcodecs opencv_videoio

在caffe路径下运行下面命令:

复制代码
sed -i 's/CV_LOAD_IMAGE_COLOR/cv::IMREAD_COLOR/g' src/caffe/layers/window_data_layer.cpp
sed -i 's/CV_LOAD_IMAGE_COLOR/cv::IMREAD_COLOR/g' src/caffe/util/io.cpp
sed -i 's/CV_LOAD_IMAGE_GRAYSCALE/cv::ImreadModes::IMREAD_GRAYSCALE/g' src/caffe/util/io.cpp
sed -i 's/CV_LOAD_IMAGE_COLOR/cv::IMREAD_COLOR/g' src/caffe/test/test_io.cpp
sed -i 's/CV_LOAD_IMAGE_GRAYSCALE/cv::ImreadModes::IMREAD_GRAYSCALE/g' src/caffe/test/test_io.cpp
make all -j16
make test -j16
make runtest -j16
export CAFFE="/home/caffe/file/caffe"
export PATH="$CAFFE/build/tools:$PATH"
caffe --version

如果出现了版本号,则证明安装成功

相关推荐
晚霞的不甘8 分钟前
CANN × ROS 2:为智能机器人打造实时 AI 推理底座
人工智能·神经网络·架构·机器人·开源
饭饭大王6668 分钟前
CANN 生态中的自动化测试利器:`test-automation` 项目保障模型部署可靠性
深度学习
互联网Ai好者11 分钟前
MiyoAI数参首发体验——不止于监控,更是你的智能决策参谋
人工智能
island131411 分钟前
CANN HIXL 通信库深度解析:单边点对点数据传输、异步模型与异构设备间显存直接访问
人工智能·深度学习·神经网络
心疼你的一切16 分钟前
解锁CANN仓库核心能力:从零搭建AIGC轻量文本生成实战(附代码+流程图)
数据仓库·深度学习·aigc·流程图·cann
初恋叫萱萱17 分钟前
CANN 生态中的图优化引擎:深入 `ge` 项目实现模型自动调优
人工智能
不爱学英文的码字机器18 分钟前
深度解读CANN生态核心仓库——catlass,打造高效可扩展的分类器技术底座
人工智能·cann
Kiyra19 分钟前
作为后端开发你不得不知的 AI 知识——RAG
人工智能·语言模型
共享家952722 分钟前
Vibe Coding 与 LangChain、LangGraph 的协同进化
人工智能
dvlinker24 分钟前
2026远程桌面安全白皮书:ToDesk/TeamViewer/向日葵核心安全性与合规性横向测评
人工智能