头歌05-排列树实验-旅行商问题

"""

题目:设有n个城市组成的交通图,一个售货员从住地城市q出发,到其它城市各一次去推销货物,最后回到住地城市。

要求:假定两个城市a,b 从a到b的路程花费w_ab是已知的,问应该怎样选择一条花费最少的路线?

输入格式:

第一行n m q,n和m两个整数分别表示城市数n以及城市之间的单向路数量m,q表示住地城市(出发城市)

之后m行 a b w分别表示从城市a到城市b的单向路程的花费w_ab。

输出格式:

第一行输出最小花费是D,D表示计算得到的最小花费。

第二行输出最小花费共有N种方案,分别是:,N表示最小花费方案的种类,

接下来N行输出每种方案的前往顺序,以字典序排序输出,中间以空格分隔。

输入样例:

3 6 A

A B 12

A C 4

B C 5

B A 8

C B 7

C A 2

输出样例:

最小花费是19

最小花费共有2种方案,分别是:

A B C

A C B

"""

复制代码
from itertools import permutations
import sys

def tsp(n, m, q, edges):
    # 将城市名称转换为索引
    city_to_index = {chr(ord('A') + i): i for i in range(n)}
    index_to_city = {i: chr(ord('A') + i) for i in range(n)}
    
    if q not in city_to_index:
        raise ValueError(f"住地城市 {q} 不存在于城市列表中。")
        
    q = city_to_index[q]

    # 初始化距离矩阵,INF 表示两城市间无直接路径
    INF = sys.maxsize
    dist = [[INF] * n for _ in range(n)]
    for i in range(n):
        dist[i][i] = 0

    for a, b, w in edges:
        if a not in city_to_index or b not in city_to_index:
            raise ValueError(f"城市 {a} 或 {b} 不存在于城市列表中。")
        dist[city_to_index[a]][city_to_index[b]] = w

    # 动态规划表
    dp = [[INF] * n for _ in range(1 << n)]
    dp[1 << q][q] = 0

    # 遍历所有状态
    for mask in range(1 << n):
        for i in range(n):
            if mask & (1 << i):
                for j in range(n):
                    if not mask & (1 << j):
                        dp[mask | (1 << j)][j] = min(
                            dp[mask | (1 << j)][j], dp[mask][i] + dist[i][j])

    # 寻找最小花费
    min_cost = INF
    for i in range(n):
        if i != q:
            min_cost = min(min_cost, dp[(1 << n) - 1][i] + dist[i][q])

    # 找到所有最小花费的路径
    def find_paths(mask, i):
        if mask == (1 << q):
            return [[index_to_city[i]]]

        paths = []
        for j in range(n):
            if mask & (1 << j) and dp[mask][i] == dp[mask ^ (1 << i)][j] + dist[j][i]:
                for path in find_paths(mask ^ (1 << i), j):
                    paths.append(path + [index_to_city[i]])
        return paths

    result_paths = []
    for i in range(n):
        if i != q and dp[(1 << n) - 1][i] + dist[i][q] == min_cost:
            for path in find_paths((1 << n) - 1, i):
                result_paths.append(path)

    result_paths = sorted(result_paths)
    return min_cost, result_paths


# 输入处理
n, m, q = input().split()
n = int(n)
m = int(m)

edges = []
for _ in range(m):
    a, b, w = input().split()
    w = int(w)
    edges.append((a, b, w))

min_cost, result_paths = tsp(n, m, q, edges)

# 输出结果
print(f"最小花费是{min_cost}")
print(f"最小花费共有{len(result_paths)}种方案,分别是:")
for path in result_paths:
    print(" ".join(path))
相关推荐
爱喝可乐的老王几秒前
机器学习监督学习模型----KNN
人工智能·算法·机器学习
闪电麦坤952 分钟前
Leecode热题100:环形链表(链表)
数据结构·链表·leecode
丝斯20113 分钟前
AI学习笔记整理(54)——大模型之Agent 智能体开发前沿技术
人工智能·笔记·学习
WBluuue4 分钟前
AtCoder Beginner Contest 441(ABCDEF)
c++·算法
优爱蛋白7 分钟前
基于活性探针策略的Bromodomain蛋白质功能研究
人工智能·健康医疗
一位搞嵌入式的 genius7 分钟前
深入理解 JavaScript 原型与继承:从基础到进阶
开发语言·前端·javascript
晨非辰8 分钟前
C++波澜壮阔40年|类和对象篇:拷贝构造与赋值重载的演进与实现
运维·开发语言·c++·人工智能·后端·python·深度学习
Remember_9938 分钟前
【LeetCode精选算法】双指针专题一
java·数据结构·算法·leetcode
未来龙皇小蓝8 分钟前
策略模式:Spring Bean策略与枚举 Lambda策略
java·windows·spring boot·spring·策略模式
多米Domi0119 分钟前
0x3f 第36天 外卖8,9,树
数据结构·python·算法·leetcode