Mysql-存储引擎、索引、SQL优化和视图

存储引擎

mysql体系结构

  • 连接层
    最上层是一些客户端和链接服务,主要完成一些类似于连接处理、授权认证、及相关的安全方案。服务器也会为安全接入的每个客户端验证它所具有的操作权限。
  • 服务层
    第二层架构主要完成大多数的核心服务功能,如SQL接口,并完成缓存的查询,SQL的分析和优化,部分内置函数的执行。所有跨存储引擎的功能也在这一层实现,如 过程、函数等。
  • 引擎层
    存储引擎真正的负责了MVSOL中数据的存储和提取,服务器通过AP!和存储引整进行通信。不同的存储引警具有不同的功能,这样我们可以根据自己的需要,来选取合适的存储引擎。
  • 存储层
    主要是将数据存储在文件系统之上,并完成与存储引擎的交互

存储引擎

存储引擎就是存储数据、建立索引、更新/查询数据等技术的实现方式。存储引擎是基于表的,而不是基于库的,所以存储引擎也可被称为表类型。

  1. 在创建表时,指定存储引擎

    CREATE TABLE 表名(
    字段1 字段1 类型 [COMMENT 字段1注释]
    ...
    字段n 字段n 类型 [COMMENT 字段n注释]
    )ENGINE=INNOBB [COMMENT 表注释];

  2. 查看当前数据库支持的存储引擎

    SHOW ENGINES ;

存储引擎特点

InnoDB

  • 介绍
    InnoDB是一种兼顾高可靠性和高性能的通用存储引擎,在 MySQL5.5之后,InnoDB是默认的 MySQL 存储引擎。
  • 特点
    DML操作遵循ACID模型,支持事务;
    行级锁,提高并发访问性能;
    支持外键 FOREIGN KEY约束,保证数据的完整性和正确性;
  • 文件
    xxx.ibd:xxx代表的是表名,innoD8引擎的每张表都会对应这样一个表空间文件,存储该表的表结构(frm、sdi)数据和索引。
    参数:innodb file_per_table

    MyISAM
  • 介绍
    MyISAM是MySQL早期的默认存储引擎。
  • 特点
    不支持事务,不支持外键
    支持表锁,不支持行锁
    访问速度快
  • 文件
    xxx.sdi:存储表结构信息
    xxx.MYD:存储数据
    xxx.MY1: 存储索引

Memory

  • 介绍
    Memory引擎的表数据时存储在内存中的,由于受到硬件问题、或断电问题的影响,只能将这些表作为临时表或缓存使用。
  • 特点
    内存存放
    hash索引(默认)
  • 文件
    xxx.sdi:存储表结构信息

存储引擎选择

在选择存储引擎时,应该根据应用系统的特点选择合适的存储引擎。对于复杂的应用系统,还可以根据实际情况选择多种存储引擎进行组合。

InnoDB:是Mysql的默认存储引擎,支持事务、外键。如果应用对事务的完整性有比较高的要求,在并发条件下要求数据的一致性,数据操作除了插入和查询之外,还包含很多的更新、删除操作,那么InnoDB存储引擎是比较合适的选择。

MISAM:如果应用是以读操作和插入操作为主,只有很少的更新和删除操作,并且对事务的完整性、并发性要求不是很高,那么选择这个存储引擎是非常合适的。

MEMORY:将所有数据保存在内存中,访问速度快,通常用于临时表及缓存。MEMORY的缺陷就是对表的大小有限制,太大的表>无法缓存在内存中,而且无法保障数据的安全性。

索引

索引概述

索引(index)是帮助MvSOL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。
索引的优缺点

优势 劣势
提高数据检索的效率,降低数据库的I0成本 索引列也是要占用空间的
通过索引列对数据进行排序,降低数据排序的成本,降低CPU的消耗 索引大大提高了查询效率,同时却也降低更新表的速度,如对表进行INSERT、UPDATE、DELETE时,效率降低

索引结构

MySOL的索引是在存储引擎层实现的,不同的存储引警有不同的结构,主要包含以下几种:

索引结构 描述
B+Tree索引 最常见的索引类型,大部分引擎都支持 B+树索引
Hash索引 底层数据结构是用哈希表实现的,只有精确匹配索引列的查询才有效,不支持范围查询
R-tree(空间索引) 空间索引是MVISAM引擎的一个特殊索引类型,主要用于地理空间数据类型,通常使用较少
Full-text(全文索引) 是一种通过建立倒排索引,快速匹配文档的方式。类似于Lucene,Solr,ES
索引 InnoDB MyISAM Memory
B+tree索引 支持 支持 支持
Hash 索引 不支持 不支持 支持
R-tree 索引 不支持 支持 不支持
Full-text 5.6版本之后支持 支持 不支持


红黑树:大数据量情况下,层级较深,检索速度慢

B站 B-Tree树形成过程的演示

B站 B+Tree树形成过程的演示

MYSOL索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能。

Hash

哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。

如果两个(或多个)键值,映射到一个相同的槽位上他们就产生了hash冲突(也称为hash碰撞)可以通过链表来解决。

Hash索引特点

Hash索引只能用于对等比较(=,in),不支持范围查询(between,>,无法利用索引完成排序操作查询效率高,通常只需要一次检索就可以了,效率通常要高于B+tree索引。

存储引擎支持

在MySQL中,支持hash索引的是Memory引擎,而innoD8中具有自适应hash功能,hash索引是存储引擎根据B+Tree索引在指定条件下自动构

建的。

索引分类

分类 含义 特点 关键字
主键索引 针对于表中主键创建的索引 默认自动创建,只能有一个 PRIMARY
唯一索引 避免同一个表中某数据列中的值重复 可以有多个 UNIQUE
常规索引 快速定位特定数据 可以有多个
全文索引 全文索引查找的是文本中的关键词,而不是比较索引中的值 可以有多个 FULLTEXT

在InnoDB存储引擎中,根据索引的存储形式,又可以分为以下两种:

分类 含义 特点
聚集索引(Clustered Index) 将数据存储与索引放到了一块,索引结构的叶子节点保存了行数据 必须有,而且只有一个
二级索引(Secondary Index) 将数据与索引分开存储,索引结构的叶子节点关联的是对应的主键 可以存在多个

聚集索引选取规则:

如果存在主键,主键索引就是聚集索引。

如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引。

如果表没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的聚集索引。

id是主键,聚集索引下面row是这一行的数据,二级索引是对应的id。

回表查询指的是先通过二级索引查找到id,然后通过聚集索引查找id所对应的row。

索引语法

创建索引

CREATE [UNIOUE|FULLTEXT] INDEX index_name ON table_name (index_col_name...);

查看索引

SHOW INDEX FROM table_name;

删除索引

DROP INDEX index_name ON table_name ;

SQL性能分析

  • SOL执行频率
    MySQL客户端连接成功后,通过show [session(global] status命令可以提供服务器状态信息。通过如下指令,可以查看当前数据库的INSERT、UPDATE、DELETE、SELECT的访问频次:

    SHOW GLOBAL STATUS LIKE 'Com____';

  • 慢查询日志
    慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认10秒)的所有SQL语句的日志。MySQL的慢查询日志默认没有开启,需要在MySQL的配置文件(/etc/my.cnf)中配置如下信息:

    开启MySOL慢日志查询开关

    slow_query_log=1

    设置慢日志的时间为2秒,SOL语句执行时间超过2秒,就会视为慢查询,记录慢查询日志

    long query time=2

配置完毕之后,通过以下指令重新启动MySQL服务器进行测试,查看慢日志文件中记录的信息/var/lib/mysql/localhost-slow.log。

  • profile详情
    show profiles 能够在做SQL优化时帮助我们了解时间都耗费到哪里去了。通过have_profiling参数,能够看到当前MySQL是否支持profile操作:

    SELECT @@have profiling ;

默认profiling是关闭的,可以通过set语句在session/global级别开启profiling:

SET profiling =1

执行一系列的业务SQL的操作,然后通过如下指令查看指令的执行耗时:

#查看每一条SOL的耗时基本情况公
show profiles;
#查看指定query id的SQL语句各个阶段的耗时情况
show profile for query query id;
#查看指定query id的SOL语句CPU的使用情况
show profile cpu for query query_id;
  • explain执行计划
    EXPLAIN 或者 DESC命令获取 MVSQL如何执行 SELECT语句的信息,包括在 SELECT 语句执行过程中表如何连接和连接的顺序,语法:

    直接在select语句之前加上关键字 explain/desc

    EXPLAIN SELECT 字段列表 FROM 表名 WHERE 条件

EXPLAIN 执行计划各字段含义:

  1. id
    select查询的序列号,表示查询中执行select子句或者是操作表的顺序(id相同,执行顺序从上到下;id不同,值越大,越先执行)。
  2. select type
    表示 SELECT 的类型,常见的取值有 SIMPLE(简单表,即不使用表连接或者子查询)、PRIMARY(主查询,即外层的查询)UNION(UNION 中的第二个或者后面的查询语句)、SUBOUERY(SELECT/WHERE之后包含了子查询)等
  3. type
    表示连接类型,性能由好到差的连接类型为NULL、svstem、const、eg ref、ref、range、index、all 。
  4. possible key
    显示可能应用在这张表上的索引,一个或多个
  5. Key
    实际使用的索引,如果为NULL,则没有使用索引。
  6. Key len
    表示索引中使用的字节数,该值为索引字段最大可能长度,并非实际使用长度,在不损失精确性的前提下,"长度越短越好
  7. rows
    MySQL认为必须要执行查询的行数,在innodb引擎的表中,是一个估计值,可能并不总是准确的
  8. filtered
    表示返回结果的行数占需读取行数的百分比,filtered 的值越大越好,

索引的使用规则

最左前缀法则

如果索引了多列(联合索引),要遵守最左前缀法则。最左前缀法则指的是査询从索引的最左列开始,并且不跳过索引中的列

如果跳跃某一列,索引将部分失效(后面的字段索引失效)

索引失效

  • 范围查询
    联合索引中,出现范围查询(>,<),范围查询右侧的列索引失效
  • 索引列运算
    不要在索引列上进行运算操作,索引将失效
  • 字符串不加引号
    字符串类型字段使用时,不加引号,索引将失效
  • 模糊查询
    如果仅仅是尾部模糊匹配,索引不会失效。如果是头部模糊匹配,索引失效。
  • or连接的条件
    用or分割开的条件,如果or前的条件中的列有索引,而后面的列中没有索引,那么涉及的索引都不会被用到。
  • 数据分布影响
    如果MySQL评估使用索引比全表更慢,则不使用索引。

SQL提示

SQL提示,是优化数据库的一个重要手段,简单来说,就是在SOL语句中加入一些人为的提示来达到优化操作的目的。

use index:

explain select * from tb_user use index(idx_user_pro) where profession='软件工程';

ignore index:

explain select * tyom tb_user ignore index(idx_user_pro) where profession='软件工程';

force index:

explain select * from tb_user force index(idx_user_pro) where profession='软件工程';

覆盖索引

覆盖索引

尽量使用覆盖索引(查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到),减少select*。

explain select id, profession from tb user where profession='软件工程' and age=31 and status='0';
explain select id,profession,age, status from tb user where profession="软件工程' and age = 31 and status = '0';
explain select id,profession,age, status, name from tb user where profession='软件工程' and age = 31 and status = '0';
explain select * from tb user where profession="软件工程' and age=31 and status ='0';

索引的使用

前缀索引

当字段类型为字符串(varchar,text等)时,有时候需要索引很长的字符串,这会让索引变得很大,查询时,浪费大量的磁盘10,影响查询效率。此时可以只将字符串的一部分前缀,建立索引,这样可以大大节约索引空间,从而提高索引效率。

  • 语法

    create index idx xxxx on table name(colump(n));

  • 前缀长度
    可以根据索引的选择性来决定,而选择性是指不重复的索引值(基数)和数据表的记录总数的比值,索引选择性越高则查询效率越高唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。

    select count(distinct email)/count() from tb user ;select count(distinct substring(email,1,5))/ count() from tb user ;

单列索引与联合索引

单列索引:即一个索引只包含单个列。

联合索引:即一个索引包含了多个列。

在业务场景中,如果存在多个查询条件,考虑针对于查询字段建立索引时,建议建立联合索引,而非单列索引。

索引设计原则

  1. 针对于数据量较大,且查询比较频繁的表建立索引。
  2. 针对于常作为查询条件(where)、排序(orderby)、分组(groupby)操作的字段建立索引。
  3. 尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越高。
  4. 如果是字符串类型的字段,字段的长度较长,可以针对于字段的特点,建立前缀索引。
  5. 尽量使用联合索引,减少单列索引,查询时,联合索引很多时候可以覆盖索引,节省存储空间,避免回表,提高查询效率。
  6. 要控制索引的数量,索引并不是多多益善,索引越多,维护索引结构的代价也就越大,会影响增删改的效率。
  7. 如果索引列不能存储NULL值,请在创建表时使用NOT NULL约束它。当优化器知道每列是否包含NULL值时,它可以更好地确定哪个索引最有效地用于查询。

SQL优化

插入数据

insert优化

批量插入

Insert into tb test values(1,'Tom'),(2,'cat'),(3, Jerry');

手动提交事务

start transaction;
insert into tb_test values(1,'Tom'),(2,'cat'),(3, jerry');
insert into tb_test values(4,'Tom'),(5,'Cat'),(6, jerry');
insert into tb test values(7,'Tom'),(8,'Cat'),(9, jerry'));
commit;

主键顺序插入

主键乱序插入:8 1 9 21 88 2 415 89 5 7 3
主键顺序插入:12 3 4 5 7 8 9 15 21 88 89

大批量插入数据

如果一次性需要插入大批量数据,使用insert语句插入性能较低,此时可以使用MVSOL数据库提供的load指令进行插入。操作如下:

#客户端连接服务端时,加上参数--local-infile
mysql --local-infile -u root -p
#设置全局参数local infile为1,开启从本地加载文件导入数据的开关
set global local_infile =1;
#执行load指令将准备好的数据,加载到表结构中
load data local infile '/root/sall.log' into table `tb_user` fields terminated by ',' lines terminated by '\n';

主键优化

数据组织方式

在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表(index oraanized table IOT)

页分裂

也可以填充一半,也可以填充100%。每个页包含了2-N行数据(如果一行数据多大,会行溢出),根据主键排列。页可以为空、


页合并

当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记(flaged)为删除并且它的空间变得允许被其他记录声明使用。

当负中删除的记录达到 MERGE THRESHOLD(默认为页的50%),InnoDB会开始寻找最靠近的页(前或后)看看是否可以将两个页合并以优化空间使用。

MERGE THRESHOLD:合并页的阈值,可以自己设置,在创建表或者创建索引时指定。

主键设计原则

  • 满足业务需求的情况下,尽量降低主键的长度。
  • 插入数据时,尽量选择顺序插入,选择使用AUTOINCREMENT自增主键
  • 尽量不要使用UUID做主键或者是其他自然主键,如身份证号。
  • 业务操作时,避免对主键的修改。

order by优化

①.Usina filesot:通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sort bufer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫 FileSort 排序。

②.Using index:通过有序索引顺序扫描直接返回有序数据,这种情况即为 using index,不需要额外排序,操作效率高。

#没有创建索引时,根据age,phone进行排序
explain select id,age,phone from tb user order by age , phone;
#创建索引
create index idx user age phone aa on tb user(age,phone);
#创建索引后,根据age,phone进行升序排序
explain select id,age,phone from tb user order by age , phone;
#创建索引后,根据age,phone进行降序排序
explain select id,age,phone from tb user order by age desc , phone desc ;
#根据age,phone进行降序一个升序,一个降序
explain select id,age,phone from tb user order by age asc , phone desc;
#创建索引
create index idx user age phone ad on tb user(age asc ,phone desc);
#根据age,phone进行降序一个升序,一个降序
explain select id,age,phone from tb user order by age asc , phone desc;

group by优化

#删除掉目前的联合索引idx_user_pro_age_sta
drop index idx user pro age sta on tb user;
#执行分组操作,根据profession字段分组
explain select profession , count(*)from tb user group by profession ;
#创建索引
Create index idx user pro age sta on tb user(profession , age , status);
#执行分组操作,根据profession字段分组
explain select profession , count(*)from tb _user group by profession;
#执行分组操作,根据profession字段分组
explain select profession , count(*)from tb user group by profession, age;

在分组操作时,可以通过索引来提高效率

分组操作时,索引的使用也是满足最左前缀法则的

limit 优化

一个常见又非常头疼的问题就是 limit 2009000,10,此时需要MySQL排序前2000010记录,仅仅返回2000000-2000010的记录,其他记录丢弃,查询排序的代价非常大。

优化思路:一般分页查询时,通过创建 覆盖索引 能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化。

explain select * from tb sku t , (select id from tb sku order by id limit 2000000,10) a where t.id = a.id;

count优化

explain select count(*)from tb user ;

MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count(*)的时候会直接返回这个数,效率很高。

InnoDB 引擎就麻烦了,它执行 count(*)的时候,需要把数据一行一行地从引擎里面读出来,然后累积计数。

优化思路:自己计数。

count的几种用法

count()是一个聚合函数,对于返回的结果集,一行行地判断,如果count 函数的参数不是 NULL,累计值就加1,否则不加,最后返回累计值。

用法:count(*)、count(主键)、count(字段)、count(1)。

  1. count(主键)

    InnoDB 引擎会遍历整张表、把每一行的 主键id 值都取出来,返回给服务层。服务层拿到主键后,直接按行进行累加(主键不可能为nul)。

  2. count(字段)

    没有notnul 约束:innoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,服务层判断是否为null,不为nul,计数累加。

    有not null约束:InnoD8 引擎会遍历整张表把每一行的字段值都取出来,返 回给服务层,直接按行进行累加。

  3. count(1)

    InnoDB 引擎遍历整张表,但不取值。服务层对于返回的每一行,放一个数字"1"进去,直接按行进行累加。

  4. count(*)

    InnoDB引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接按行进行累加

按照效率排序的话,count(字段)<count(主键id)<count(1)≈count体),所以尽量使用 count(*)。

update优化

update student set no='2000100100'where id=1;

update student set no='2000100105' where name='韦一笑';

InnoDB的行锁是针对索引加的锁,不是针对记录加的锁,并且该索引不能失效,否则会从行锁升级为表锁。

视图

视图(View)是一种虚拟存在的表。视图中的数据并不在数据库中实际存在,行和列数据来自定义视图的查询中使用的表,并且是在使用视图时动态生成的。

通俗的讲,视图只保存了查询的SQL透辑,不保存查询结果。所以我们在创建视图的时候,主要的工作就落在创建这条SQL查询语句上。

  • 创建

    CREATE [OR REPLACE] VIEW 视图名称(列名列表) AS SELECT语句[WITH[CASCADED|LOCAL]CHECK OPTION]

  • 查询

    查看创建视语句:SHOW CREATE VIEW 视图名称;
    查看视图数据:SELECT*FROM 视图名称 ...;

  • 修改

    方式一:CREATE [OR REPLACE] VIEW 视图名称[(列名列表)] AS SELECT语句[WITH[CASCADED|LOCAL]CHECK OPTION;
    方式二:ALTER VIEW 视图名称[(列名列表)] AS SELECT语句 [WITH[CASCADEDILOCAL] CHECK OPTION];

  • 删除

    DROP VIEW [IF EXISTS]视图名称[,视图名称];

视图的检查选项

当使用WITH CHECK OPTION子句创建视图时,MSOL会通过视图检查正在更改的每个行,例如 插入,更新,删除,以使其符合视图的定义。MySQL允许基于另一个视图创建视图,它还会检查依赖视图中的规则以保持一致性。为了确定检查的范围,mysql提供了两个选项:CASCADED 和 LOCAL,默认值为 CASCADED。

CASCADED

create view v1 as select id,name from student where id <= 20

create view v2 as select id , name from v1 where id >= 10 with cascaded check option ;

LOCAL :

create view v1ks select id,name from student where id <= 15;
create view v2 as select id , name from v1 where id>= 10 with local check option ;
create view v3 as select id , name from v2 where id < 20;

视图更新及作用

视图更新

要使视图可更新,视图中的行与基础表中的行之间必须存在一对一的关系。如果视图包含以下任何一项,则该视图不可更新:

  1. 聚合函数或窗口函数(SUM()、MIN()、MAX()、COUNT()等)
  2. DISTINCT
  3. GROUP BY
  4. HAVING
  5. UNION 或者 UNION ALL

作用

  1. 简单
    视图不仅可以简化用户对数据的理解,也可以简化他们的操作。那些被经常使用的查询可以被定义为视图,从而使得用户不必为以后的操作每次指定全部的条件。
  2. 安全
    数据库可以授权,但不能授权到数据库特定行和特定的列上。通过视图用户只能查询和修改他们所能见到的数据
  3. 数据独立
    视图可帮助用户屏蔽真实表结构变化带来的影响。
相关推荐
Vae_Mars5 分钟前
QT-installEventFilter
数据库·qt
小狮子安度因10 分钟前
Qt SQL模块概述
sql·qt·oracle
计算机毕设指导621 分钟前
基于SpringBoot共享汽车管理系统【附源码】
java·spring boot·后端·mysql·spring·汽车·intellij idea
蜗牛丨1 小时前
Go Vue3 CMS管理后台(前后端分离模式)
mysql·docker·go·vue3·axios·gin·jwt·分页·跨域·ant design vue·log·gorm·otp动态码登录·validator·模型绑定·权限判断
澜世1 小时前
2024小迪安全基础入门第七课
网络·笔记·安全·网络安全
weixin_478689761 小时前
【二叉树】【2.1遍历二叉树】【刷题笔记】【灵神题单】
笔记
炽天使1 小时前
aws rds-mysql不支持性能详情监控
linux·数据库·mysql·云计算·aws·rds
wzx_Eleven1 小时前
【课堂笔记】隐私计算实训营第四期:“隐语”可信隐私计算开源框架
笔记
QQ_1154320312 小时前
基于Java+SpringBoot+Mysql在线简单拍卖竞价拍卖竞拍系统功能设计与实现九
java·spring boot·mysql·毕业设计·毕业源码·竞拍系统·竞拍项目
CQXXCL2 小时前
MySQL-学习笔记
笔记·学习·mysql