ACW石子合并-XMUOJ元素共鸣:唤醒神之眼 -区间DP

题目

思路

话不多说,直接上代码

代码

cpp 复制代码
/*
ACW石子合并-XMUOJ元素共鸣:唤醒神之眼 
JinlongW-2024/05/25 
区间DP
当i<j时,f[i][j]=min(f[i][k]+f[k][j]+s[j]-s[i-1])
当i=j时,f[i][j]=0
最终答案:f[1][n] 
*/

/*
区间DP模板:
所有的区间dp问题枚举时,第一维通常是枚举区间长度,并且一般 len = 1 时用来初始化,枚举从 len = 2 开始;
第二维枚举起点 i (右端点 j 自动获得,j = i + len - 1)
for (int len = 1; len <= n; len++) {         // 区间长度
    for (int i = 1; i + len - 1 <= n; i++) { // 枚举起点
        int j = i + len - 1;                 // 区间终点
        if (len == 1) {
            dp[i][j] = 初始值
            continue;
        }

        for (int k = i; k < j; k++) {        // 枚举分割点,构造状态转移方程
            dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + w[i][j]);
        }
    }
} 
*/
#include<iostream>
#include<algorithm>
#include<vector>
#include<cstring>
using namespace std;
const int N=310;
int s[N],a[N];
int f[N][N];
int n;
int main(){
	cin >> n ;
	for(int i=1;i<=n;i++){
		cin>>a[i];
		s[i]=s[i-1]+a[i];
	}
	memset(f,0x3f,sizeof f);
	for (int len=1;len<=n;len++){
		for(int i=1;i+len-1<=n;i++){
			int j=i+len-1;
			if(len==1){
				f[i][j]=0;
				continue;
			} 
			for(int k=i;k<=j-1;k++){
				f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]+s[j]-s[i-1]);
			} 
		}
	}
	cout<<f[1][n]<<endl;
	return 0;
}
相关推荐
超的小宝贝1 小时前
数据结构算法(C语言)
c语言·数据结构·算法
木子.李3477 小时前
排序算法总结(C++)
c++·算法·排序算法
闪电麦坤958 小时前
数据结构:递归的种类(Types of Recursion)
数据结构·算法
Gyoku Mint8 小时前
机器学习×第二卷:概念下篇——她不再只是模仿,而是开始决定怎么靠近你
人工智能·python·算法·机器学习·pandas·ai编程·matplotlib
纪元A梦9 小时前
分布式拜占庭容错算法——PBFT算法深度解析
java·分布式·算法
px不是xp9 小时前
山东大学算法设计与分析复习笔记
笔记·算法·贪心算法·动态规划·图搜索算法
枫景Maple10 小时前
LeetCode 2297. 跳跃游戏 VIII(中等)
算法·leetcode
鑫鑫向栄10 小时前
[蓝桥杯]修改数组
数据结构·c++·算法·蓝桥杯·动态规划
鑫鑫向栄10 小时前
[蓝桥杯]带分数
数据结构·c++·算法·职场和发展·蓝桥杯