大模型训练中CUDA out of memory的几种解决方法

常用:

  1. 减小batch size

  2. 如果需要较大的batch size来达到预期训练指标效果,则使用gradient accumulation来累积梯度,达到等价效果的同时,占用显存小;

  3. 使用低精度做训练。(mixed precision training). FP16+FP32

  4. 减小训练数据样本的长度

  5. Model并行或者Pipeline并行,把模型拆分至多卡

不常用:

  1. 释放闲置内存;torch.cuda.empty_cache()

  2. 缓解PyTorch的显存碎片;PYTORCH_CUDA_ALLOC_CONF和max_split_size_mb

7.使用更小的模型

  1. 增大GPU显存

  2. 使用nvidia-smi看到该GPU上的其他进程;可杀则杀;

Perplexity 查询结果:

Here are several solutions to resolve the "CUDA out of memory" error when training large language models (LLMs) using SFT (Supervised Fine-Tuning):

  1. Reduce batch size: Lowering the batch size during training can significantly reduce the memory requirements. For example, you could set the batch size to 1 and use gradient accumulation to accumulate gradients over multiple batches before updating the model weights.
  2. Use gradient accumulation: Gradient accumulation allows you to accumulate gradients over multiple batches before updating the model weights. This effectively increases the batch size without increasing the memory usage. Be sure to divide the loss by the number of gradient accumulation steps to maintain the correct gradient scale.
  3. Enable mixed precision training: Training the model in mixed precision (FP16) can reduce the memory usage compared to full precision (FP32). PyTorch provides the torch.cuda.amp package for automatic mixed precision training.
  4. Reduce input sequence length: If your input texts are long, consider truncating or splitting them into shorter sequences to reduce the memory usage during tokenization and model inference.
  5. Free GPU memory: Call torch.cuda.empty_cache() to free up any unused GPU memory allocated by PyTorch. This might not help much, but it's worth a try.
  6. Set PYTORCH_CUDA_ALLOC_CONF environment variable: You can try setting the PYTORCH_CUDA_ALLOC_CONF environment variable with max_split_size_mb to avoid memory fragmentation. Experiment with different values based on your GPU memory.
  7. Use a smaller model: If possible, consider using a smaller version of the LLM that has fewer parameters. Smaller models generally require less memory during training.
  8. Increase GPU memory: If you have access to a GPU with more memory, consider using it to accommodate the memory requirements of the LLM training.
  9. Distribute training across multiple GPUs: Splitting the training across multiple GPUs can reduce the memory usage per GPU. However, this approach requires additional setup and coordination.
  10. Monitor GPU memory usage: Use nvidia-smi to monitor the GPU memory usage and identify any other processes consuming GPU memory. Terminate unnecessary processes to free up memory
相关推荐
云卓SKYDROID7 分钟前
无人机机体结构设计要点与难点!
人工智能·科技·无人机·科普·云卓科技
誉鏐17 分钟前
PyTorch复现线性模型
人工智能·pytorch·python
我要昵称干什么18 分钟前
基于S函数的simulink仿真
人工智能·算法
向上的车轮19 分钟前
NOA是什么?国内自动驾驶技术的现状是怎么样的?
人工智能·机器学习·自动驾驶
AndrewHZ43 分钟前
【图像处理基石】什么是tone mapping?
图像处理·人工智能·算法·计算机视觉·hdr
Ai尚研修-贾莲43 分钟前
基于DeepSeek、ChatGPT支持下的地质灾害风险评估、易发性分析、信息化建库及灾后重建
人工智能·chatgpt
SelectDB技术团队1 小时前
Apache Doris 2025 Roadmap:构建 GenAI 时代实时高效统一的数据底座
大数据·数据库·数据仓库·人工智能·ai·数据分析·湖仓一体
weixin_435208161 小时前
通过 Markdown 改进 RAG 文档处理
人工智能·python·算法·自然语言处理·面试·nlp·aigc
大数据在线1 小时前
AI重塑云基础设施,亚马逊云科技打造AI定制版IaaS“样板房”
人工智能·云基础设施·ai大模型·亚马逊云科技
hello_ejb31 小时前
聊聊Spring AI的RetrievalAugmentationAdvisor
人工智能·spring·restful