基于GA遗传优化的CNN-LSTM的时间序列回归预测matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

[4.1 遗传算法(GA)原理](#4.1 遗传算法(GA)原理)

[4.2 GA优化CNN-LSTM步骤](#4.2 GA优化CNN-LSTM步骤)

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

复制代码
..................................................................
figure
plot(Error2,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');

[V,I] = min(JJ);
X     = phen1(I,:);

LR             = X(1);
numHiddenUnits1 = floor(X(2))+1;% 定义隐藏层中LSTM单元的数量
numHiddenUnits2 = floor(X(3))+1;% 定义隐藏层中LSTM单元的数量
%CNN-GRU-ATT
layers = func_model2(Dim,numHiddenUnits1,numHiddenUnits2);

%训练
[Net,INFO] = trainNetwork(Nsp_train2, NTsp_train, layers, options);
IT  =[1:length(INFO.TrainingLoss)];
Accuracy=INFO.TrainingRMSE;

figure;
plot(IT(1:1:end),Accuracy(1:1:end));
xlabel('epoch');
ylabel('RMSE');
%数据预测
Dpre1 = predict(Net, Nsp_train2);
Dpre2 = predict(Net, Nsp_test2);

%归一化还原
T_sim1=Dpre1*Vmax2;
T_sim2=Dpre2*Vmax2;


%网络结构
analyzeNetwork(Net)


figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);

legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on

subplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
 
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);



figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
legend('真实值', '预测值')
xlabel('测试样本')
ylabel('测试结果')
grid on

subplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
 
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);


save R2.mat Num2 Tat_test T_sim2 IT Accuracy Error2
140

4.算法理论概述

基于遗传算法(Genetic Algorithm, GA)优化的CNN-LSTM(卷积神经网络-长短时记忆网络)时间序列回归预测模型,是一种结合了进化计算与深度学习的先进预测方法,旨在提高对时间序列数据未来值预测的准确性和稳定性。这种方法通过GA优化CNN-LSTM模型的超参数,以实现对时间序列数据更高效的特征提取和模式学习。

4.1 遗传算法(GA)原理

遗传算法是一种模拟自然界中生物进化过程的全局优化算法,通过"选择"、"交叉"(杂交)和"变异"等操作,逐步优化个体群体,寻找问题的最优解。在CNN-LSTM模型优化中,GA的目标是找到一组最佳超参数(如学习率、网络结构参数等),使得模型的预测性能指标(如均方误差、R²分数等)最优。

4.2 GA优化CNN-LSTM步骤

CNN-LSTM模型结合了卷积神经网络(CNN)和长短时记忆网络(LSTM),以高效处理时间序列数据的特征提取和序列建模。

GA优化CNN-LSTM步骤

  1. 初始化:随机生成一组超参数个体(染色体),构成初始种群。
  2. 评估:对每个个体(一组超参数),训练对应的CNN-LSTM模型,并在验证集上评估性能。
  3. 选择:基于评估性能,选择优秀个体(如采用轮盘赌选择、锦标赛选择等策略)。
  4. 交叉:对选中个体进行交叉操作,生成新的个体(如单点交叉、均匀交叉)。
  5. 变异:以一定概率对个体的某些基因(超参数)进行变异(如突变率改变)。
  6. 重复:回到步骤2,直到达到预设的代数或满足停止条件。

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
Coovally AI模型快速验证11 小时前
基于YOLOv11的CF-YOLO,如何突破无人机小目标检测?
人工智能·神经网络·yolo·目标检测·计算机视觉·cnn·无人机
胖哥真不错16 小时前
基于MATLAB的Lasso回归的数据回归预测方法应用
机器学习·matlab·项目实战·lasso回归
机器学习之心HML1 天前
分类预测 | Matlab基于KPCA-ISSA-SVM和ISSA-SVM和SSA-SVM和SVM多模型分类预测对比
支持向量机·matlab·分类·kpca-issa-svm
Coovally AI模型快速验证1 天前
从FCOS3D到PGD:看深度估计如何快速搭建你的3D检测项目
人工智能·深度学习·神经网络·yolo·3d·cnn
2zcode1 天前
基于Matlab多特征融合的可视化指纹识别系统
人工智能·算法·matlab
蓝桉(努力版)2 天前
MATLAB可视化5:华夫图(饼图的平替可以表示种类的分布,附有完整代码详细讲解)(求个关注、点赞和收藏)(对配色不满意可以自己调节配色,附调色教程)
开发语言·数学建模·matlab·信息可视化·matlab可视化
freexyn2 天前
Matlab自学笔记六十二:求解三角函数方程的通解周期解
笔记·算法·matlab
棱镜研途2 天前
学习笔记丨卷积神经网络(CNN):原理剖析与多领域Github应用
图像处理·笔记·学习·计算机视觉·cnn·卷积神经网络·信号处理
是Dream呀3 天前
目标检测:视觉系统中的CNN-Transformer融合网络
目标检测·cnn·transformer
水龙吟啸4 天前
从零开始搭建深度学习大厦系列-2.卷积神经网络基础(5-9)
人工智能·pytorch·深度学习·cnn·mxnet