SparkStreaming架构原理(详解)

Spark概述

SparkStreaming架构原理

Spark Streaming的架构主要由以下几个关键部分组成。

1.数据源接收器(Receiver

  • 执行流程开始于数据源接收阶段,其中接收器(Receiver)负责从外部数据源获取数据流。

  • 接收器可以连接到诸如Kafka、Flume、Kinesis等数据源,或直接通过网络套接字接收数据。

  • 接收器的主要功能是接收数据并将其缓冲起来,然后传输给Spark集群进行处理。

2.微批次生成器(Micro-batch Generator

  • 将接收到的数据划分为小的微批次,每个微批次包含一段时间范围内的数据。

  • 微批次生成器控制着微批次的生成速率,并确保数据按时到达处理流程。

3.离散化流(DStream

  • 每个微批次的数据被转换成一个DStream对象。
  • DStream是一系列连续的RDD(Resilient Distributed Dataset)的抽象,每个RDD包含一个微批次的数据。

4.转换操作(Transformations

  • 在DStream上执行一系列的转换操作,例如映射、过滤、聚合等,以实现所需的业务逻辑。
  • 转换操作是在微批次级别上进行的,即对每个微批次的数据执行相同的转换操作。

5.RDD生成器(RDD Generator

  • 转换操作生成的DStream会被转换成相应的RDD。
  • RDD是Spark中的基本数据抽象,代表可并行操作的数据集合。

6.计算引擎(Compute Engine

  • 生成的RDD会被提交给Spark引擎进行计算执行。
  • Spark引擎会根据RDD的依赖关系和转换操作构建执行计划,并将计算任务分配给集群中的工作节点执行。

7.结果输出器(Output Operations

  • 计算执行完成后,结果可以写入外部系统或存储介质中。
  • 输出可以是保存到文件系统、写入数据库、发送到消息队列等操作。
  • 输出操作通常在驱动器程序中定义,并在每个微批次处理完成后触发执行。

8.容错处理(Fault Tolerance

  • Spark Streaming具有内置的容错机制,可以处理节点故障或数据丢失的情况。
  • 容错主要依赖于Spark引擎的RDD血统(RDD lineage)和数据日志记录,以实现数据的可靠处理和恢复。
相关推荐
Elastic 中国社区官方博客17 分钟前
Elasticsearch 中的文档级基于属性的访问控制 - ABAC
大数据·数据库·elasticsearch·搜索引擎·全文检索
YangYang9YangYan23 分钟前
2026年中专计算机专业证书报考指南:高性价比认证与职业路径规划
大数据·人工智能·学习·计算机视觉
InfiSight智睿视界33 分钟前
即时零售仓网管理的AI 智能化演进
大数据·人工智能·零售
汽车仪器仪表相关领域36 分钟前
MTX-AL:传统指针美学与现代数字科技的完美融合 - 模拟宽带空燃比计
大数据·人工智能·科技·单元测试·汽车·压力测试·可用性测试
WHFENGHE42 分钟前
金具线夹测温在线监测装置:电力设备安全运行的核心技术支撑
大数据·人工智能·安全
kong79069281 小时前
大数据的特征和数据分析
大数据·数据挖掘·数据分析
灯下夜无眠1 小时前
spark集群文件分发问题
大数据·分布式·spark
做人不要太理性1 小时前
【Linux系统】ext2文件系统
大数据·linux·操作系统·文件系统
IT机器猫1 小时前
ES基础一
大数据·elasticsearch·搜索引擎
TDengine (老段)1 小时前
TDengine 统计函数 VAR_SAMP 用户手册
大数据·数据库·物联网·概率论·时序数据库·tdengine·涛思数据