Learning A Single Network for Scale-Arbitrary Super-Resolution

  • ICCV2021
  1. 问题引入
  • 现在的超分模型大多专门为固定整数scale的超分任务设计,本文提出一个可插拔模块,来利用一个模型来实现任意尺度的超分模型,包含non-integer(e.g., from 100 × 100 to 220 × 220) and asymmetric SR(100 × 100 to 220 × 420);
  • 实现方法是增加一个模块,模块有多个scale aware feature adaption block和scale aware upsampling layer组成,同时,conditional conv被用来生成scale aware filters;
  • 基于meta-sr的改进之作;
  1. 方法
  • 本文分析了不同scale SR之间的相互关系,方法是通过取各个特定尺度的模型,在相同的输入的情况下,取出相同层的feature map来计算相似度,相似度高的位置的特征可以直接被用来进行任意尺度的超分,而相似度低的地方只能用来做特定尺度的超分;
  • 首先本文提出的方法是可插拔的,所以是可以在现有的特定尺度超分模型的基础上添加本文提出的两个模块实现任意尺度的超分任务,基本模型如下图,其中在每几个backbone blocks之后插入scale aware feature adaption block,在最后使用scale aware usampling layer来进行任意尺度的上采样;
  • Scale-Aware Feature Adaption如图所示,其中scale aware convolution layer如下图所示,卷积的取得是使用scale作为条件的:
  • Scale-Aware Upsampling:之前的方法使用pixel shuffle的方法来实现特定整数尺度的上采样,此处泛化为scale aware upsampling layer,其图示如下:
  1. 实验
  • 数据:DIV2K dataset for train and Set5 [27], Set14 [28], B100 [29], Urban100 [30], and Manga109 for eval;
  • 指标:PSNR + SSIM;
相关推荐
网安INF2 小时前
深度学习中的逻辑回归:从原理到Python实现
人工智能·python·深度学习·算法·逻辑回归
CoovallyAIHub3 小时前
RTMPose:重新定义多人姿态估计的“实时”标准!
深度学习·算法·计算机视觉
hjs_deeplearning4 小时前
认知篇#10:何为分布式与多智能体?二者联系?
人工智能·分布式·深度学习·学习·agent·智能体
瑶光守护者4 小时前
【卫星通信】超低比特率语音编解码器(ULBC)的信道特性评估
深度学习·华为·卫星通信·3gpp·ulbc
昵称是6硬币11 小时前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
云渚钓月梦未杳11 小时前
深度学习04 卷积神经网络CNN
人工智能·深度学习·cnn
heimeiyingwang9 天前
【深度学习加速探秘】Winograd 卷积算法:让计算效率 “飞” 起来
人工智能·深度学习·算法
IAM四十二10 天前
Google 端侧 AI 框架 LiteRT 初探
android·深度学习·tensorflow
小白菜33366610 天前
DAY 37 早停策略和模型权重的保存
人工智能·深度学习·算法
yizhimie3710 天前
DAY 40 训练和测试的规范写法
深度学习