Learning A Single Network for Scale-Arbitrary Super-Resolution

  • ICCV2021
  1. 问题引入
  • 现在的超分模型大多专门为固定整数scale的超分任务设计,本文提出一个可插拔模块,来利用一个模型来实现任意尺度的超分模型,包含non-integer(e.g., from 100 × 100 to 220 × 220) and asymmetric SR(100 × 100 to 220 × 420);
  • 实现方法是增加一个模块,模块有多个scale aware feature adaption block和scale aware upsampling layer组成,同时,conditional conv被用来生成scale aware filters;
  • 基于meta-sr的改进之作;
  1. 方法
  • 本文分析了不同scale SR之间的相互关系,方法是通过取各个特定尺度的模型,在相同的输入的情况下,取出相同层的feature map来计算相似度,相似度高的位置的特征可以直接被用来进行任意尺度的超分,而相似度低的地方只能用来做特定尺度的超分;
  • 首先本文提出的方法是可插拔的,所以是可以在现有的特定尺度超分模型的基础上添加本文提出的两个模块实现任意尺度的超分任务,基本模型如下图,其中在每几个backbone blocks之后插入scale aware feature adaption block,在最后使用scale aware usampling layer来进行任意尺度的上采样;
  • Scale-Aware Feature Adaption如图所示,其中scale aware convolution layer如下图所示,卷积的取得是使用scale作为条件的:
  • Scale-Aware Upsampling:之前的方法使用pixel shuffle的方法来实现特定整数尺度的上采样,此处泛化为scale aware upsampling layer,其图示如下:
  1. 实验
  • 数据:DIV2K dataset for train and Set5 [27], Set14 [28], B100 [29], Urban100 [30], and Manga109 for eval;
  • 指标:PSNR + SSIM;
相关推荐
adjusttraining2 小时前
毁掉孩子视力不是电视和手机,两个隐藏很深因素,很多家长并不知
深度学习·其他
ziwu5 小时前
【宠物识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·深度学习·图像识别
ziwu5 小时前
海洋生物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·深度学习·图像识别
WWZZ20256 小时前
快速上手大模型:深度学习12(目标检测、语义分割、序列模型)
深度学习·算法·目标检测·计算机视觉·机器人·大模型·具身智能
浩浩的代码花园11 小时前
自研端侧推理模型实测效果展示
android·深度学习·计算机视觉·端智能
晨非辰11 小时前
C++ 波澜壮阔 40 年:从基础I/O到函数重载与引用的完整构建
运维·c++·人工智能·后端·python·深度学习·c++40周年
这张生成的图像能检测吗14 小时前
(论文速读)EfficientTrain++: 高效视觉骨干训练的通用课程学习
人工智能·深度学习·计算机视觉·训练方法
编程小白_正在努力中1 天前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习
无风听海1 天前
神经网络之经验风险最小化
人工智能·深度学习·神经网络
H***99761 天前
月之暗面公开强化学习训练加速方法:训练速度暴涨97%,长尾延迟狂降93%
人工智能·深度学习·机器学习