robosuite-自建夹具bug

场景:

robosuite 中创建自己的夹具

问题描述

bash 复制代码
Traceback (most recent call last):
  File "collect_human_demonstrations_auto.py", line 436, in <module>
    dataset_states_to_obs(output_filename, save_name+"-obs.hdf5")
  File "/home/idm/Shares/imitation/haier_environments/my_envs/utils/dataset_states_to_obs.py", line 221, in dataset_states_to_obs
    traj = extract_trajectory(
  File "/home/idm/Shares/imitation/haier_environments/my_envs/utils/dataset_states_to_obs.py", line 85, in extract_trajectory
    obs = env.reset_to(initial_state)
  File "/home/idm/Shares/imitation/robomimic/robomimic/envs/env_robosuite.py", line 157, in reset_to
    xml = self.env.edit_model_xml(state["model"])
  File "/home/idm/Shares/imitation/robosuite/robosuite/environments/base.py", line 536, in edit_model_xml
    print("old_path:", old_path)
ValueError: max() arg is an empty sequence

原因分析:

下列代码中有相应的代码路径及代码解释,其中,源码中存在一个 val == robosuite 的操作,即所有的文件路径中都需要包含 robosuite 这个词(没有查明原因),考虑这个ind 参数是与 new_pathold_path 相关,所以就动态的print 了一下,发现这俩变量是恒等的,暂时没有领悟到作者这样作的意图是什么;

python 复制代码
 def edit_model_xml(self, xml_str):
        """
        This function edits the model xml with custom changes, including resolving relative paths,
        applying changes retroactively to existing demonstration files, and other custom scripts.
        Environment subclasses should modify this function to add environment-specific xml editing features.
        Args:
            xml_str (str): Mujoco sim demonstration XML file as string
        Returns:
            str: Edited xml file as string
        """

        path = os.path.split(robosuite.__file__)[0]
        path_split = path.split("/")

        # replace mesh and texture file paths
        tree = ET.fromstring(xml_str)
        root = tree
        asset = root.find("asset")
        meshes = asset.findall("mesh")
        textures = asset.findall("texture")
        all_elements = meshes + textures

        for elem in all_elements:
            old_path = elem.get("file")
            if old_path is None:
                continue
            old_path_split = old_path.split("/")
            import ipdb; ipdb.set_trace()
            print("old_path:", old_path)
            print("old_path_split:", old_path_split)
            ind = max(loc for loc, val in enumerate(old_path_split) if val == "robosuite")  # last occurrence index
            new_path_split = path_split + old_path_split[ind + 1 :]
            new_path = "/".join(new_path_split)
            # print("new_path:", new_path)
            # if new_path == old_path:
                # print("new_path == old_path")
            # else:
                # print("new_path != old_path")

            # elem.set("file", new_path)
            elem.set("file", old_path)

        return ET.tostring(root, encoding="utf8").decode("utf8")

解决方案:

既然是恒等的,那就直接删掉就好,修改后的代码如下:

python 复制代码
 def edit_model_xml(self, xml_str):
        """
        This function edits the model xml with custom changes, including resolving relative paths,
        applying changes retroactively to existing demonstration files, and other custom scripts.
        Environment subclasses should modify this function to add environment-specific xml editing features.
        Args:
            xml_str (str): Mujoco sim demonstration XML file as string
        Returns:
            str: Edited xml file as string
        """

        path = os.path.split(robosuite.__file__)[0]
        path_split = path.split("/")

        # replace mesh and texture file paths
        tree = ET.fromstring(xml_str)
        root = tree
        asset = root.find("asset")
        meshes = asset.findall("mesh")
        textures = asset.findall("texture")
        all_elements = meshes + textures
        for elem in all_elements:
            old_path = elem.get("file")
            if old_path is None:
                continue
            elem.set("file", old_path)

        return ET.tostring(root, encoding="utf8").decode("utf8")
相关推荐
东方佑1 分钟前
从音频到Token:构建原神角色语音识别模型的完整实践
人工智能·音视频·语音识别
周周记笔记16 分钟前
学习笔记:Python的起源
开发语言·python
dlraba80222 分钟前
基于 OpenCV 与 SIFT 算法的指纹识别系统实现:从匹配到可视化
人工智能·opencv·计算机视觉
shizidushu25 分钟前
Hugging Face NLP课程学习记录 - 3. 微调一个预训练模型
人工智能·学习·自然语言处理·微调·huggingface
格林威29 分钟前
机器视觉在半导体制造中有哪些检测应用
人工智能·数码相机·yolo·计算机视觉·视觉检测·制造·相机
魂尾ac41 分钟前
Django + Vue3 前后端分离技术实现自动化测试平台从零到有系列 <第一章> 之 注册登录实现
后端·python·django·vue
月岛雫-1 小时前
“单标签/多标签” vs “二分类/多分类”
人工智能·分类·数据挖掘
Source.Liu1 小时前
【Pywinauto库】10.7 pywinauto.controls.uia_controls控件
windows·python·自动化
云卓SKYDROID1 小时前
无人机飞行速度模块技术要点概述
人工智能·无人机·飞行速度·高科技·云卓科技
人工干智能1 小时前
建自己的Python项目仓库,使用工具:GitHub(远程仓库)、GitHub Desktop(版本控制工具)、VSCode(代码编辑器)
python·编辑器·github