场景文本检测&识别学习 day10(MMdetection)

配置文件(config)

  • 由于在大型项目中,一种模型需要分:tiny、small、big等很多种,而它们的区别主要在网络结构,数据的加载,训练策略等,且差别很多都很小,所以如果每个模型都手动从头写一份,很麻烦,为了方便,现在都是直接采用配置文件的形式来定义
  • 如yaml文件、py文件等

MMdetection的配置文件构成

  • 在MMdection的配置文件中,我们根据字段来定义模型训练的各部分
  • 配置文件的运作方式

使用MMdection来训练自己的检测模型

  • coco数据集的组织形式

  • coco数据集的标注格式

  • 所有标注信息存储在一个JSON对象中,包含以下信息:images--所有原始图像信息、annotations--所有标注信息、categories--全部物体类别信息


  • 其中:name表示当前的物体类别,supercategories表示当前物体的超类,如car的超类为vehicle

  • 我们将自己的数据集按照以上的格式整理好后,还需要更改模型的配置文件(有些模型是继承coco_instance.py,需要仔细查找),如下:

  • 重点是需要修改:数据集的路径、batch_size、进程数

  • 在将原始图像输入进模型之前,我们可能还需要对图像进行:随机裁剪与缩放、水平翻转、像素值归一化、转换为PyTorch Tensor等操作,这些操作我们统一放在数据处理流水线,即pipeline中。对于微调训练,通常情况是不需要进行更改的

  • 下图为分类的pipeline:

  • 由于检测有框,所以多了一个annotations,对于框也需要进行跟原始图片一样的操作,下图是检测的:

相关推荐
qq_386322691 小时前
华为网路设备学习-21 IGP路由专题-路由过滤(filter-policy)
前端·网络·学习
Robot2511 小时前
「华为」人形机器人赛道投资首秀!
大数据·人工智能·科技·microsoft·华为·机器人
J先生x1 小时前
【IP101】图像处理进阶:从直方图均衡化到伽马变换,全面掌握图像增强技术
图像处理·人工智能·学习·算法·计算机视觉
Narutolxy3 小时前
大模型数据分析破局之路20250512
人工智能·chatgpt·数据分析
浊酒南街3 小时前
TensorFlow中数据集的创建
人工智能·tensorflow
2301_787552875 小时前
console-chat-gpt开源程序是用于 AI Chat API 的 Python CLI
人工智能·python·gpt·开源·自动化
虾球xz5 小时前
游戏引擎学习第268天:合并调试链表与分组
c++·学习·链表·游戏引擎
layneyao5 小时前
AI与自然语言处理(NLP):从BERT到GPT的演进
人工智能·自然语言处理·bert
Y3174295 小时前
Python Day23 学习
python·学习
jndingxin6 小时前
OpenCV 的 CUDA 模块中用于将多个单通道的 GpuMat 图像合并成一个多通道的图像 函数cv::cuda::merge
人工智能·opencv·计算机视觉