场景文本检测&识别学习 day10(MMdetection)

配置文件(config)

  • 由于在大型项目中,一种模型需要分:tiny、small、big等很多种,而它们的区别主要在网络结构,数据的加载,训练策略等,且差别很多都很小,所以如果每个模型都手动从头写一份,很麻烦,为了方便,现在都是直接采用配置文件的形式来定义
  • 如yaml文件、py文件等

MMdetection的配置文件构成

  • 在MMdection的配置文件中,我们根据字段来定义模型训练的各部分
  • 配置文件的运作方式

使用MMdection来训练自己的检测模型

  • coco数据集的组织形式

  • coco数据集的标注格式

  • 所有标注信息存储在一个JSON对象中,包含以下信息:images--所有原始图像信息、annotations--所有标注信息、categories--全部物体类别信息


  • 其中:name表示当前的物体类别,supercategories表示当前物体的超类,如car的超类为vehicle

  • 我们将自己的数据集按照以上的格式整理好后,还需要更改模型的配置文件(有些模型是继承coco_instance.py,需要仔细查找),如下:

  • 重点是需要修改:数据集的路径、batch_size、进程数

  • 在将原始图像输入进模型之前,我们可能还需要对图像进行:随机裁剪与缩放、水平翻转、像素值归一化、转换为PyTorch Tensor等操作,这些操作我们统一放在数据处理流水线,即pipeline中。对于微调训练,通常情况是不需要进行更改的

  • 下图为分类的pipeline:

  • 由于检测有框,所以多了一个annotations,对于框也需要进行跟原始图片一样的操作,下图是检测的:

相关推荐
现在,此刻11 分钟前
李沐深度学习笔记D3-线性回归
笔记·深度学习·线性回归
能来帮帮蒟蒻吗37 分钟前
深度学习(2)—— 神经网络与训练
人工智能·深度学习·神经网络
新加坡内哥谈技术1 小时前
从文字到世界:空间智能是人工智能的下一个前沿
人工智能
oil欧哟1 小时前
文心 5.0 来了,百度大模型的破局之战
前端·人工智能·百度·prompt
玩转AGI1 小时前
一文看懂 Agentic AI:搭建单体 vs 多智能体系统,结果出乎意料!
人工智能
ai大模型分享员1 小时前
项目实战:基于RAPTOR RAG检索技术的工业设备故障诊断系统
人工智能
d111111111d1 小时前
STM32外设学习--DMA直接存储器读取(AD扫描程序,DMA搬运)--学习笔记。
笔记·stm32·单片机·嵌入式硬件·学习
MUTA️2 小时前
什么是RKNN?
人工智能
倚栏听风雨2 小时前
2、Gemini里 交互模式和非交互模式区别
人工智能
illuspas2 小时前
MI50运算卡使用llama.cpp的ROCm后端运行Qwen3-Coder-30B-A3B的速度测试
人工智能·llama