场景文本检测&识别学习 day10(MMdetection)

配置文件(config)

  • 由于在大型项目中,一种模型需要分:tiny、small、big等很多种,而它们的区别主要在网络结构,数据的加载,训练策略等,且差别很多都很小,所以如果每个模型都手动从头写一份,很麻烦,为了方便,现在都是直接采用配置文件的形式来定义
  • 如yaml文件、py文件等

MMdetection的配置文件构成

  • 在MMdection的配置文件中,我们根据字段来定义模型训练的各部分
  • 配置文件的运作方式

使用MMdection来训练自己的检测模型

  • coco数据集的组织形式

  • coco数据集的标注格式

  • 所有标注信息存储在一个JSON对象中,包含以下信息:images--所有原始图像信息、annotations--所有标注信息、categories--全部物体类别信息


  • 其中:name表示当前的物体类别,supercategories表示当前物体的超类,如car的超类为vehicle

  • 我们将自己的数据集按照以上的格式整理好后,还需要更改模型的配置文件(有些模型是继承coco_instance.py,需要仔细查找),如下:

  • 重点是需要修改:数据集的路径、batch_size、进程数

  • 在将原始图像输入进模型之前,我们可能还需要对图像进行:随机裁剪与缩放、水平翻转、像素值归一化、转换为PyTorch Tensor等操作,这些操作我们统一放在数据处理流水线,即pipeline中。对于微调训练,通常情况是不需要进行更改的

  • 下图为分类的pipeline:

  • 由于检测有框,所以多了一个annotations,对于框也需要进行跟原始图片一样的操作,下图是检测的:

相关推荐
UQI-LIUWJ5 分钟前
论文笔记:Tuning Language Models by Proxy
论文阅读·人工智能·语言模型
大魔王(已黑化)44 分钟前
OpenCV —— 绘制图形
人工智能·opencv·计算机视觉
开开心心_Every1 小时前
多线程语音识别工具
javascript·人工智能·ocr·excel·语音识别·symfony
机器之心1 小时前
扣子开源全家桶,Apache 2.0加持,AI Agent又一次卷到起飞
人工智能
草堂春睡足1 小时前
【Datawhale AI夏令营】科大讯飞AI大赛(大模型技术)/夏令营:让AI理解列车排期表
人工智能·笔记
余俊晖1 小时前
GRPO强化学习缓解多模态大模型OCR任务的幻觉思路及数据生成思路
人工智能
sssammmm2 小时前
AI入门学习-模型评估示例讲解
人工智能·学习
小Tomkk2 小时前
AutoLabelImg:高效的数据自动化标注工具和下载
运维·人工智能·自动化
aneasystone本尊2 小时前
构建和使用 RAGFlow 的标签集
人工智能
柠檬味拥抱2 小时前
CI/CD与模型监控平台集成MLOps系统实现的全面路径
人工智能