场景文本检测&识别学习 day10(MMdetection)

配置文件(config)

  • 由于在大型项目中,一种模型需要分:tiny、small、big等很多种,而它们的区别主要在网络结构,数据的加载,训练策略等,且差别很多都很小,所以如果每个模型都手动从头写一份,很麻烦,为了方便,现在都是直接采用配置文件的形式来定义
  • 如yaml文件、py文件等

MMdetection的配置文件构成

  • 在MMdection的配置文件中,我们根据字段来定义模型训练的各部分
  • 配置文件的运作方式

使用MMdection来训练自己的检测模型

  • coco数据集的组织形式

  • coco数据集的标注格式

  • 所有标注信息存储在一个JSON对象中,包含以下信息:images--所有原始图像信息、annotations--所有标注信息、categories--全部物体类别信息


  • 其中:name表示当前的物体类别,supercategories表示当前物体的超类,如car的超类为vehicle

  • 我们将自己的数据集按照以上的格式整理好后,还需要更改模型的配置文件(有些模型是继承coco_instance.py,需要仔细查找),如下:

  • 重点是需要修改:数据集的路径、batch_size、进程数

  • 在将原始图像输入进模型之前,我们可能还需要对图像进行:随机裁剪与缩放、水平翻转、像素值归一化、转换为PyTorch Tensor等操作,这些操作我们统一放在数据处理流水线,即pipeline中。对于微调训练,通常情况是不需要进行更改的

  • 下图为分类的pipeline:

  • 由于检测有框,所以多了一个annotations,对于框也需要进行跟原始图片一样的操作,下图是检测的:

相关推荐
Chase_______1 小时前
AI提效指南:Nano Banana 生成精美PPT与漫画
人工智能·powerpoint
雨大王5121 小时前
汽车产业供应链优化的可行策略及案例分析
人工智能·机器学习
YJlio1 小时前
Windows Sysinternals 文件工具学习笔记(12.11):综合实战——从磁盘告警到文件替换的一条龙排障
windows·笔记·学习
梁辰兴1 小时前
三星自研GPU剑指AI芯片霸权,2027年能否撼动英伟达?
人工智能·gpu·芯片·电子·ai芯片·三星·梁辰兴
旖旎夜光3 小时前
Linux(4)(下)
linux·学习
敲敲了个代码6 小时前
从硬编码到 Schema 推断:前端表单开发的工程化转型
前端·javascript·vue.js·学习·面试·职场和发展·前端框架
吴佳浩8 小时前
Python入门指南(七) - YOLO检测API进阶实战
人工智能·后端·python
陈嘿萌8 小时前
图像融合任务在目标检测中的性能评估与深度思考
目标检测·yolov8·图像融合·深度思考·代码实现
tap.AI8 小时前
RAG系列(二)数据准备与向量索引
开发语言·人工智能
我命由我123458 小时前
SVG - SVG 引入(SVG 概述、SVG 基本使用、SVG 使用 CSS、SVG 使用 JavaScript、SVG 实例实操)
开发语言·前端·javascript·css·学习·ecmascript·学习方法