Python散点图矩阵代码模版

本文分享Python seaborn实现散点图矩阵代码模版,节选自👉嫌Matplotlib繁琐?试试Seaborn!

散点图矩阵(scatterplot matrix)展示原始数据中所有变量两两之间关系,可以规避单一统计指标的偏差,可以在平面上快速优雅的探索高维数据。注意区别于前文"分面多子图",散点图矩阵可在每个子图中显示不同变量之间的关系(上三角形和下三角形中的图表互为镜像),格子中也可以使用不同的图形。

seaborn通过pairplot和PairGrid轻松实现散点图矩阵。


散点图矩阵-一行代码

复制代码
sns.pairplot(data=penguins, ).fig.set_dpi(150)  #一行代码

散点图矩阵-高度个性化

复制代码
g = sns.PairGrid(penguins,
                 hue="性别",
                 palette=["#006a8e", "#b1283a"],
                 diag_sharey=False)
g.map_upper(
    sns.scatterplot,
    size=penguins["体重"],  #散点按照"体重"变化
)  #更多参数参考上文章节"7.1 散点图(13种)"
g.map_diag(
    sns.histplot,
    multiple="stack",  #堆叠
)  #更多参数参考上文章节"8.1.12 分组直方图-堆积叠加"
g.map_lower(
    sns.kdeplot,
    fill=True,  #填充
    alpha=0.6,  #透明度
)  #更多参数参考上文章节"8.2 核密度图(16种)"
g.add_legend(title="")
g.fig.set_dpi(150)

换一组palettable中的配色👉palettable实现配色自由

复制代码
g = sns.PairGrid(penguins,
                 hue="性别",
                 palette=palettable.tableau.BlueRed_6.mpl_colors[0:3],
                 diag_sharey=False)
g.map_upper(
    sns.scatterplot,
    size=penguins["体重"],
)
g.map_diag(
    sns.histplot,
    multiple="stack",
)
g.map_lower(
    sns.kdeplot,
    fill=True,
    alpha=0.6,
)
g.add_legend(title="")
g.fig.set_dpi(150)
复制代码
g = sns.PairGrid(penguins,
                 hue="性别",
                 palette=palettable.lightbartlein.diverging.BlueGrey_8_r.mpl_colors[0:3],
                 diag_sharey=False)
g.map_upper(
    sns.scatterplot,
    size=penguins["体重"],
)
g.map_diag(
    sns.histplot,
    multiple="stack",
)
g.map_lower(
    sns.kdeplot,
    fill=True,
    alpha=0.6,
)
g.add_legend(title="")
g.fig.set_dpi(150)
复制代码
g = sns.PairGrid(penguins,
                 hue="性别",
                 palette=palettable.cartocolors.qualitative.Bold_9_r.mpl_colors[0:3],
                 diag_sharey=False)
g.map_upper(
    sns.scatterplot,
    size=penguins["体重"],
)
g.map_diag(
    sns.histplot,
    multiple="stack",
)
g.map_lower(
    sns.kdeplot,
    fill=True,
    alpha=0.6,
)
g.add_legend(title="")
g.fig.set_dpi(150)

更多干货👇

相关推荐
我材不敲代码3 小时前
Python实现打包贪吃蛇游戏
开发语言·python·游戏
0思必得05 小时前
[Web自动化] Selenium处理动态网页
前端·爬虫·python·selenium·自动化
韩立学长5 小时前
【开题答辩实录分享】以《基于Python的大学超市仓储信息管理系统的设计与实现》为例进行选题答辩实录分享
开发语言·python
qq_192779875 小时前
高级爬虫技巧:处理JavaScript渲染(Selenium)
jvm·数据库·python
u0109272715 小时前
使用Plotly创建交互式图表
jvm·数据库·python
爱学习的阿磊5 小时前
Python GUI开发:Tkinter入门教程
jvm·数据库·python
Imm7776 小时前
中国知名的车膜品牌推荐几家
人工智能·python
tudficdew6 小时前
实战:用Python分析某电商销售数据
jvm·数据库·python
TM1Club6 小时前
AI驱动的预测:新的竞争优势
大数据·人工智能·经验分享·金融·数据分析·自动化
Fleshy数模6 小时前
CentOS7 安装配置 MySQL5.7 完整教程(本地虚拟机学习版)
linux·mysql·centos