深度学习之混合精度训练AMP介绍

混合精度训练是一种通过同时使用 FP16 和 FP32 精度来加速深度学习训练的技术。它可以在不损失模型性能的情况下,显著减少训练时间和内存使用。下面是关于混合精度训练的一些解释:

  1. 原理

混合精度训练利用了 FP16 (16位浮点)和 FP32 (32位浮点)的不同特性。

FP16 计算速度快,但动态范围和精度较低。FP32 则相反,计算速度较慢但动态范围和精度较高。

混合精度训练将网络的某些部分(如权重和激活)使用 FP16 表示,而其他部分(如梯度)使用 FP32 表示。这样可以在不损失模型性能的情况下,提高训练速度和减少内存使用。

Float16 (FP16) 和 Float32 (FP32)的差异:

FP16 使用 16 bit 表示浮点数,FP32 使用 32 bit。

FP16 的动态范围和精度较 FP32 更小,但计算速度更快,尤其在 GPU 上。

FP16 可能会产生溢出和下溢出,导致精度损失。需要特殊处理来避免这些问题

  1. 实现

常见的混合精度训练库包括 NVIDIA 的 APEX 和 PyTorch 内置的 torch.cuda.amp 模块。

使用时,需要将模型和优化器包装在 FP16 和 FP32 混合精度上下文中,并使用特殊的损失缩放和梯度重scaling技术。

例如在 PyTorch 中,可以使用如下代码启用混合精度训练:

  1. 混合精度训练的流程

将网络中的部分操作使用 FP16 表示,其他部分使用 FP32 表示。通常权重和激活使用 FP16,梯度和损失函数使用 FP32。

需要使用 loss scaling 技术来避免 FP16 计算时的精度损失。

在反向传播时,需要使用 gradient scaling 和 gradient clipping 技术来确保梯度的稳定性。

  1. 优势

训练速度提高 2-3 倍

内存使用降低 2 倍左右

无需修改原有的训练代码,只需添加少量混合精度相关的代码

总之,混合精度训练是一种非常实用的技术,可以大幅提高深度学习模型的训练效率,是深度学习从业者必须掌握的技能之一。

相关推荐
孤独野指针*P25 分钟前
深度学习中的目标检测:从 PR 曲线到 AP
python·深度学习·yolo
大有数据可视化1 小时前
人工智能如何革新数据可视化领域?探索未来趋势
人工智能·信息可视化
AI technophile2 小时前
OpenCV计算机视觉实战(4)——计算机视觉核心技术全解析
人工智能·opencv·计算机视觉
云和数据.ChenGuang2 小时前
人工智能 机器学习期末考试题
开发语言·人工智能·python·机器学习·毕业设计
珊珊而川3 小时前
3.1监督微调
人工智能
我是小伍同学3 小时前
基于卷积神经网络和Pyqt5的猫狗识别小程序
人工智能·python·神经网络·qt·小程序·cnn
界面开发小八哥5 小时前
界面控件DevExpress WinForms v25.1新功能预览 - 功能区组件全新升级
人工智能·.net·界面控件·winform·devexpress
zhz52146 小时前
开源数字人框架 AWESOME-DIGITAL-HUMAN 技术解析与应用指南
人工智能·ai·机器人·开源·ai编程·ai数字人·智能体
1296004526 小时前
pytorch基础的学习
人工智能·pytorch·学习
沉默媛7 小时前
RuntimeError: expected scalar type ComplexDouble but found Float
人工智能·pytorch·深度学习