深度学习之混合精度训练AMP介绍

混合精度训练是一种通过同时使用 FP16 和 FP32 精度来加速深度学习训练的技术。它可以在不损失模型性能的情况下,显著减少训练时间和内存使用。下面是关于混合精度训练的一些解释:

  1. 原理

混合精度训练利用了 FP16 (16位浮点)和 FP32 (32位浮点)的不同特性。

FP16 计算速度快,但动态范围和精度较低。FP32 则相反,计算速度较慢但动态范围和精度较高。

混合精度训练将网络的某些部分(如权重和激活)使用 FP16 表示,而其他部分(如梯度)使用 FP32 表示。这样可以在不损失模型性能的情况下,提高训练速度和减少内存使用。

Float16 (FP16) 和 Float32 (FP32)的差异:

FP16 使用 16 bit 表示浮点数,FP32 使用 32 bit。

FP16 的动态范围和精度较 FP32 更小,但计算速度更快,尤其在 GPU 上。

FP16 可能会产生溢出和下溢出,导致精度损失。需要特殊处理来避免这些问题

  1. 实现

常见的混合精度训练库包括 NVIDIA 的 APEX 和 PyTorch 内置的 torch.cuda.amp 模块。

使用时,需要将模型和优化器包装在 FP16 和 FP32 混合精度上下文中,并使用特殊的损失缩放和梯度重scaling技术。

例如在 PyTorch 中,可以使用如下代码启用混合精度训练:

  1. 混合精度训练的流程

将网络中的部分操作使用 FP16 表示,其他部分使用 FP32 表示。通常权重和激活使用 FP16,梯度和损失函数使用 FP32。

需要使用 loss scaling 技术来避免 FP16 计算时的精度损失。

在反向传播时,需要使用 gradient scaling 和 gradient clipping 技术来确保梯度的稳定性。

  1. 优势

训练速度提高 2-3 倍

内存使用降低 2 倍左右

无需修改原有的训练代码,只需添加少量混合精度相关的代码

总之,混合精度训练是一种非常实用的技术,可以大幅提高深度学习模型的训练效率,是深度学习从业者必须掌握的技能之一。

相关推荐
汀、人工智能6 分钟前
AI-Compass LLM训练框架生态:整合ms-swift、Unsloth、Megatron-LM等核心框架,涵盖全参数/PEFT训练与分布式优化
人工智能·分布式·sft·swift·大模型训练
ATM0066 分钟前
开源AI Agent开发平台Dify源码剖析系列(二)
人工智能·开源·dify·源码剖析
ATM0061 小时前
人机协作系列(四)AI编程的下一个范式革命——看Factory AI如何重构软件工程?
人工智能·大模型·agent·人机协作·人机协同
读创商闻2 小时前
极狐GitLab CEO 柳钢——极狐 GitLab 打造中国企业专属 AI 编程平台,引领编程新潮流
人工智能·gitlab
kailp2 小时前
语言模型玩转3D生成:LLaMA-Mesh开源项目
人工智能·3d·ai·语言模型·llama·gpu算力
marteker2 小时前
弗兰肯斯坦式的人工智能与GTM策略的崩溃
人工智能·搜索引擎
无心水2 小时前
大语言模型零样本情感分析实战:无需机器学习训练,96%准确率实现指南
人工智能·机器学习·语言模型
来自于狂人2 小时前
AI大模型训练的云原生实践:如何用Kubernetes指挥千卡集群?
人工智能·云原生·kubernetes
千宇宙航8 小时前
闲庭信步使用图像验证平台加速FPGA的开发:第十四课——图像二值化的FPGA实现
图像处理·计算机视觉·fpga开发
橡晟8 小时前
深度学习入门:让神经网络变得“深不可测“⚡(二)
人工智能·python·深度学习·机器学习·计算机视觉