深度学习之混合精度训练AMP介绍

混合精度训练是一种通过同时使用 FP16 和 FP32 精度来加速深度学习训练的技术。它可以在不损失模型性能的情况下,显著减少训练时间和内存使用。下面是关于混合精度训练的一些解释:

  1. 原理

混合精度训练利用了 FP16 (16位浮点)和 FP32 (32位浮点)的不同特性。

FP16 计算速度快,但动态范围和精度较低。FP32 则相反,计算速度较慢但动态范围和精度较高。

混合精度训练将网络的某些部分(如权重和激活)使用 FP16 表示,而其他部分(如梯度)使用 FP32 表示。这样可以在不损失模型性能的情况下,提高训练速度和减少内存使用。

Float16 (FP16) 和 Float32 (FP32)的差异:

FP16 使用 16 bit 表示浮点数,FP32 使用 32 bit。

FP16 的动态范围和精度较 FP32 更小,但计算速度更快,尤其在 GPU 上。

FP16 可能会产生溢出和下溢出,导致精度损失。需要特殊处理来避免这些问题

  1. 实现

常见的混合精度训练库包括 NVIDIA 的 APEX 和 PyTorch 内置的 torch.cuda.amp 模块。

使用时,需要将模型和优化器包装在 FP16 和 FP32 混合精度上下文中,并使用特殊的损失缩放和梯度重scaling技术。

例如在 PyTorch 中,可以使用如下代码启用混合精度训练:

  1. 混合精度训练的流程

将网络中的部分操作使用 FP16 表示,其他部分使用 FP32 表示。通常权重和激活使用 FP16,梯度和损失函数使用 FP32。

需要使用 loss scaling 技术来避免 FP16 计算时的精度损失。

在反向传播时,需要使用 gradient scaling 和 gradient clipping 技术来确保梯度的稳定性。

  1. 优势

训练速度提高 2-3 倍

内存使用降低 2 倍左右

无需修改原有的训练代码,只需添加少量混合精度相关的代码

总之,混合精度训练是一种非常实用的技术,可以大幅提高深度学习模型的训练效率,是深度学习从业者必须掌握的技能之一。

相关推荐
UR的出不克4 分钟前
基于Stacking集成学习的乙型肝炎预测模型:从数据到部署的完整实践
人工智能·机器学习·集成学习
AI营销先锋43 分钟前
2026 年度深度报告跨境GEO服务商TOP3榜单原圈科技领跑AI营销,破解增长难题
人工智能
地理探险家1 小时前
【YOLOv8 农业实战】11 组大豆 + 棉花深度学习数据集分享|附格式转换 + 加载代码
人工智能·深度学习·yolo·计算机视觉·目标跟踪·农业·大豆
我不是8神1 小时前
字节跳动 Eino 框架(Golang+AI)知识点全面总结
开发语言·人工智能·golang
TonyLee0171 小时前
半监督学习介绍
人工智能·python·深度学习·机器学习
hjs_deeplearning1 小时前
文献阅读篇#11:自动驾驶中的基础模型:场景生成与场景分析综述(2)
人工智能·机器学习·自动驾驶
沫儿笙1 小时前
FANUC发那科焊接机器人厚板焊接节气
人工智能·机器人
百***78751 小时前
Sora Video2 API国内接入避坑与场景落地:开发者实战笔记
人工智能·笔记·gpt
lpfasd1231 小时前
与AI对话2小时,AI给我的启示
人工智能
Ro Jace1 小时前
On Periodic Pulse Interval Analysis with Outliers and Missing Observations
人工智能·机器学习