深度学习之混合精度训练AMP介绍

混合精度训练是一种通过同时使用 FP16 和 FP32 精度来加速深度学习训练的技术。它可以在不损失模型性能的情况下,显著减少训练时间和内存使用。下面是关于混合精度训练的一些解释:

  1. 原理

混合精度训练利用了 FP16 (16位浮点)和 FP32 (32位浮点)的不同特性。

FP16 计算速度快,但动态范围和精度较低。FP32 则相反,计算速度较慢但动态范围和精度较高。

混合精度训练将网络的某些部分(如权重和激活)使用 FP16 表示,而其他部分(如梯度)使用 FP32 表示。这样可以在不损失模型性能的情况下,提高训练速度和减少内存使用。

Float16 (FP16) 和 Float32 (FP32)的差异:

FP16 使用 16 bit 表示浮点数,FP32 使用 32 bit。

FP16 的动态范围和精度较 FP32 更小,但计算速度更快,尤其在 GPU 上。

FP16 可能会产生溢出和下溢出,导致精度损失。需要特殊处理来避免这些问题

  1. 实现

常见的混合精度训练库包括 NVIDIA 的 APEX 和 PyTorch 内置的 torch.cuda.amp 模块。

使用时,需要将模型和优化器包装在 FP16 和 FP32 混合精度上下文中,并使用特殊的损失缩放和梯度重scaling技术。

例如在 PyTorch 中,可以使用如下代码启用混合精度训练:

  1. 混合精度训练的流程

将网络中的部分操作使用 FP16 表示,其他部分使用 FP32 表示。通常权重和激活使用 FP16,梯度和损失函数使用 FP32。

需要使用 loss scaling 技术来避免 FP16 计算时的精度损失。

在反向传播时,需要使用 gradient scaling 和 gradient clipping 技术来确保梯度的稳定性。

  1. 优势

训练速度提高 2-3 倍

内存使用降低 2 倍左右

无需修改原有的训练代码,只需添加少量混合精度相关的代码

总之,混合精度训练是一种非常实用的技术,可以大幅提高深度学习模型的训练效率,是深度学习从业者必须掌握的技能之一。

相关推荐
小鑫同学5 分钟前
M4 MacBook Pro + Qwen 模型:企业问答机器人原型微调实战方案
人工智能·llm
搬砖的小码农_Sky15 分钟前
机器人商业化落地需要突破的关键性技术
人工智能·ai·机器人
luoganttcc15 分钟前
PyTorch 中nn.Embedding
pytorch·深度学习·embedding
xwz小王子16 分钟前
Science Robotics 封面论文:RoboBallet利用图神经网络和强化学习规划多机器人协作
人工智能·神经网络·机器人
Deepoch20 分钟前
当按摩机器人“活了”:Deepoc具身智能如何重新定义人机交互体验
人工智能·科技·机器人·人机交互·具身智能
37手游后端团队21 分钟前
Cursor实战:用Cursor实现积分商城系统
人工智能·后端
九章云极AladdinEdu26 分钟前
绿色算力技术栈:AI集群功耗建模与动态调频系统
人工智能·pytorch·深度学习·unity·游戏引擎·transformer·gpu算力
嘀咕博客38 分钟前
拍我AI:PixVerse国内版,爱诗科技推出的AI视频生成平台
人工智能·科技·音视频·ai工具
dlraba80239 分钟前
OpenCV 实战:多角度模板匹配实现图像目标精准定位
人工智能·opencv·计算机视觉
盼小辉丶40 分钟前
Transformer实战(17)——微调Transformer语言模型进行多标签文本分类
深度学习·分类·transformer