深度学习之混合精度训练AMP介绍

混合精度训练是一种通过同时使用 FP16 和 FP32 精度来加速深度学习训练的技术。它可以在不损失模型性能的情况下,显著减少训练时间和内存使用。下面是关于混合精度训练的一些解释:

  1. 原理

混合精度训练利用了 FP16 (16位浮点)和 FP32 (32位浮点)的不同特性。

FP16 计算速度快,但动态范围和精度较低。FP32 则相反,计算速度较慢但动态范围和精度较高。

混合精度训练将网络的某些部分(如权重和激活)使用 FP16 表示,而其他部分(如梯度)使用 FP32 表示。这样可以在不损失模型性能的情况下,提高训练速度和减少内存使用。

Float16 (FP16) 和 Float32 (FP32)的差异:

FP16 使用 16 bit 表示浮点数,FP32 使用 32 bit。

FP16 的动态范围和精度较 FP32 更小,但计算速度更快,尤其在 GPU 上。

FP16 可能会产生溢出和下溢出,导致精度损失。需要特殊处理来避免这些问题

  1. 实现

常见的混合精度训练库包括 NVIDIA 的 APEX 和 PyTorch 内置的 torch.cuda.amp 模块。

使用时,需要将模型和优化器包装在 FP16 和 FP32 混合精度上下文中,并使用特殊的损失缩放和梯度重scaling技术。

例如在 PyTorch 中,可以使用如下代码启用混合精度训练:

  1. 混合精度训练的流程

将网络中的部分操作使用 FP16 表示,其他部分使用 FP32 表示。通常权重和激活使用 FP16,梯度和损失函数使用 FP32。

需要使用 loss scaling 技术来避免 FP16 计算时的精度损失。

在反向传播时,需要使用 gradient scaling 和 gradient clipping 技术来确保梯度的稳定性。

  1. 优势

训练速度提高 2-3 倍

内存使用降低 2 倍左右

无需修改原有的训练代码,只需添加少量混合精度相关的代码

总之,混合精度训练是一种非常实用的技术,可以大幅提高深度学习模型的训练效率,是深度学习从业者必须掌握的技能之一。

相关推荐
抠头专注python环境配置11 分钟前
Pytorch GPU版本安装保姆级教程
pytorch·python·深度学习·conda
计算机科研圈15 分钟前
ICCV 2025 | 首个3D动作游戏专用VLA模型,打黑神话&只狼超越人类玩家
图像处理·人工智能·3d·黑神话
是乐谷16 分钟前
快手可灵招海外产品运营实习生
人工智能·产品运营·内容运营
Tezign_space17 分钟前
特赞内容运营解决方案,AI重构品牌内容价值链
大数据·人工智能·数据挖掘·产品运营·内容运营·内容+ai·agentai
欧阳码农32 分钟前
我的AI自学路线,可能对你有用
前端·人工智能·后端
大模型真好玩37 分钟前
DeepSeek更新!速览DeepSeek V3.1新特性
人工智能·python·mcp
钝挫力PROGRAMER1 小时前
大模型级部署:从本地轻量化到云原生方案
人工智能
中国国际健康产业博览会1 小时前
2026天然健康原料展:聚焦健康,成就未来商机与合作
大数据·人工智能
ccLianLian2 小时前
深度学习·GFSS
深度学习
fakaifa3 小时前
【最新版】CRMEB Pro版v3.4系统源码全开源+PC端+uniapp前端+搭建教程
人工智能·小程序·uni-app·php·crmeb·源码下载·crmebpro