OpenFHE 源码解析:BinFHE 部分

参考文献:

  1. ABB+22\] Al Badawi A, Bates J, Bergamaschi F, et al. Openfhe: Open-source fully homomorphic encryption library\[C\]//Proceedings of the 10th Workshop on Encrypted Computing \& Applied Homomorphic Cryptography. 2022: 53-63.

  2. Welcome to OpenFHE's documentation!
  3. 编译 OpenFHE

文章目录

param

class BinFHECryptoParams : public Serializable,描述 RGSW / RLWE 的参数

cpp 复制代码
BinFHECryptoParams(const std::shared_ptr<LWECryptoParams>& lweparams,
                       const std::shared_ptr<RingGSWCryptoParams>& rgswparams);

构造器,根据 LWERGSW 的参数去设置 BinFHE 的参数
*

cpp 复制代码
std::shared_ptr<LWECryptoParams> m_LWEParams{nullptr};	// shared pointer to an instance of LWECryptoParams
std::shared_ptr<RingGSWCryptoParams> m_RGSWParams{nullptr};	// shared pointer to an instance of RGSWCryptoParams

私有成员,分别存储:LWE 参数、RGSW 参数

context

class BinFHEContext : public Serializable,存储上下文信息

cpp 复制代码
void GenerateBinFHEContext(uint32_t n, uint32_t N, const NativeInteger& q, const NativeInteger& Q, double std,
                               uint32_t baseKS, uint32_t baseG, uint32_t baseR, SecretKeyDist keyDist = UNIFORM_TERNARY,
                               BINFHE_METHOD method = GINX, uint32_t numAutoKeys = 10);

根据设置的参数,生成上下文
*

cpp 复制代码
std::shared_ptr<LWEEncryptionScheme> m_LWEscheme{nullptr};	// Shared pointer to the underlying additive LWE scheme
std::shared_ptr<BinFHEScheme> m_binfhescheme{nullptr};	// Shared pointer to the underlying RingGSW/RLWE scheme

私钥成员,记录了 LWE 以及 RGSW / RLWE 的参数和接口
*

cpp 复制代码
LWEPrivateKey KeyGen() const;
LWEPublicKey PubKeyGen(ConstLWEPrivateKey& sk) const;

生成 LWE 的私钥、公钥
*

cpp 复制代码
LWECiphertext Encrypt(ConstLWEPrivateKey& sk, LWEPlaintext m, BINFHE_OUTPUT output = BOOTSTRAPPED,
                          LWEPlaintextModulus p = 4, const NativeInteger& mod = 0) const;
void Decrypt(ConstLWEPrivateKey& sk, ConstLWECiphertext& ct, LWEPlaintext* result, LWEPlaintextModulus p = 4) const;

LWE 的加密/解密
*

cpp 复制代码
LWEPrivateKey KeyGenN() const;
LWESwitchingKey KeySwitchGen(ConstLWEPrivateKey& sk, ConstLWEPrivateKey& skN) const;

生成 RLWE 私钥,以及从 ( Q , N ) (Q,N) (Q,N)-RLWE 到 ( q , n ) (q,n) (q,n)-LWE 的 KSK
*

cpp 复制代码
LWECiphertext SwitchCTtoqn(ConstLWESwitchingKey& ksk, ConstLWECiphertext& ct) const;

执行从 ( Q , N ) (Q,N) (Q,N)-RLWE 到 ( q , n ) (q,n) (q,n)-LWE 的密钥切换
*

cpp 复制代码
void BTKeyGen(ConstLWEPrivateKey& sk, KEYGEN_MODE keygenMode = SYM_ENCRYPT);

生成对应的 BK 并存储为数据成员,它的格式:

cpp 复制代码
typedef struct {
    // refreshing key
    RingGSWACCKey BSkey;
    // switching key
    LWESwitchingKey KSkey;
    // public key
    LWEPublicKey Pkey;
} RingGSWBTKey;
  • GetPublicKey, GetSwitchKey, GetRefreshKey,获取 BK 中存储的三种密钥

cpp 复制代码
LWECiphertext Bootstrap(ConstLWECiphertext& ct) const;

自举,包括 [DM15]、[CGGI16]、[LMK+23] 三种盲旋转算法
*

cpp 复制代码
LWECiphertext EvalBinGate(BINGATE gate, ConstLWECiphertext& ct1, ConstLWECiphertext& ct2) const;
LWECiphertext EvalBinGate(BINGATE gate, const std::vector<LWECiphertext>& ctvector) const;
LWECiphertext EvalNOT(ConstLWECiphertext& ct) const;
LWECiphertext EvalConstant(bool value) const;

前者计算 2 2 2 扇入,后者计算 3 , 4 3,4 3,4 扇入,支持的布尔门:OR, AND, NOR, NAND, XOR_FAST, XNOR_FAST, MAJORITY, AND3, OR3, AND4, OR4, CMUX, XOR, XNOR,以及 NOTConstant
*

cpp 复制代码
std::vector<NativeInteger> GenerateLUTviaFunction(NativeInteger (*f)(NativeInteger m, NativeInteger p), NativeInteger p);

根据任意函数 f : Z p → Z p f:\mathbb Z_p \to \mathbb Z_p f:Zp→Zp 生成 LUT:设置 Δ i n = Δ o u t = q / p \Delta_{in}=\Delta_{out}=q/p Δin=Δout=q/p,其中 p ≤ q ≤ 2 N p \le q \le 2N p≤q≤2N 都是二的幂次,令 T V [ i ] = Δ o u t ⋅ f ( ⌊ i / Δ i n ⌋ ) , i = 0 , 1 , ⋯   , q − 1 TV[i]=\Delta_{out} \cdot f(\lfloor i/\Delta_{in}\rfloor), i=0,1,\cdots,q-1 TV[i]=Δout⋅f(⌊i/Δin⌋),i=0,1,⋯,q−1
*

cpp 复制代码
LWECiphertext EvalFunc(ConstLWECiphertext& ct, const std::vector<NativeInteger>& LUT) const;

LMP22\] 的 **FDFB** ,它会自动检查 LUT 的性质(**反循环、周期、任意**)。 * 如果是反循环的:简单执行一次 PBS 即可 * 如果是 q / 2 q/2 q/2-周期的:先执行 PBS **提取出符号位把它减去**,再执行一次 PBS 完成函数计算 * 如果是任意的:进一步要求 q ≤ N q \\le N q≤N,**强行提升 1 1 1-bit 模数** ,先执行 PBS 提取出符号位把它减去,再执行一次 PBS 完成函数计算,最后模切换回到 q q q 上 * ```cpp LWECiphertext EvalSign(ConstLWECiphertext& ct, bool schemeSwitch = false); ``` \[LMP22\] 的**高精度符号函数** * ```cpp LWECiphertext EvalFloor(ConstLWECiphertext& ct, uint32_t roundbits = 0) const; std::vector EvalDecomp(ConstLWECiphertext& ct); ``` \[LMP22\] 的**同态舍入** 、**同态数字分解** ## constants 定义了一些参数选项,用于 ```cpp enum BINFHE_PARAMSET { TOY, // no security MEDIUM, // 108 bits of security for classical and 100 bits for quantum STD128_LMKCDEY, // Optimized for LMKCDEY (using Gaussian secrets) - // more than 128 bits of security for classical computer attacks - // optimize runtime by finding a non-power-of-two n STD128_AP, // Optimized for AP (has higher failure probability for GINX) - // more than 128 bits of security for classical computer attacks - // optimize runtime by finding a non-power-of-two n STD128, // more than 128 bits of security for classical computer attacks - // optimize runtime by finding a non-power-of-two n STD192, // more than 192 bits of security for classical computer attacks - // optimize runtime by finding a non-power-of-two n STD256, // more than 256 bits of security for classical computer attacks - // optimize runtime by finding a non-power-of-two n STD128Q, // more than 128 bits of security for quantum attacks - // optimize runtime by finding a non-power-of-two n STD128Q_LMKCDEY, // Optimized for LMKCDEY (using Gaussian secrets) - // more than 128 bits of security for quantum attacks - // optimize runtime by finding a non-power-of-two n STD192Q, // more than 192 bits of security for quantum attacks - // optimize runtime by finding a non-power-of-two n STD256Q, // more than 256 bits of security for quantum attacks - // optimize runtime by finding a non-power-of-two n STD128_3, // more than 128 bits of security for classical computer attacks - // optimize runtime by finding a non-power-of-two n for 3 binary inputs STD128_3_LMKCDEY, // Optimized for LMKCDEY (using Gaussian secrets) - // more than 128 bits of security for classical computer attacks - // optimize runtime by finding a non-power-of-two n for 3 binary inputs STD128Q_3, // more than 128 bits of security for quantum computer attacks - // optimize runtime by finding a non-power-of-two n for 3 binary inputs STD128Q_3_LMKCDEY, // Optimized for LMKCDEY (using Gaussian secrets) - // more than 128 bits of security for quantum computer attacks - // optimize runtime by finding a non-power-of-two n for 3 binary inputs STD192Q_3, // more than 192 bits of security for quantum computer attacks - // optimize runtime by finding a non-power-of-two n for 3 binary inputs STD256Q_3, // more than 256 bits of security for quantum computer attacks - // optimize runtime by finding a non-power-of-two n for 3 binary inputs STD128_4, // more than 128 bits of security for classical computer attacks - // optimize runtime by finding a non-power-of-two n for 4 binary inputs STD128_4_LMKCDEY, // Optimized for LMKCDEY (using Gaussian secrets) - // more than 128 bits of security for classical computer attacks - // optimize runtime by finding a non-power-of-two n for 4 binary inputs STD128Q_4, // more than 128 bits of security for quantum computer attacks - // optimize runtime by finding a non-power-of-two n for 4 binary inputs STD128Q_4_LMKCDEY, // Optimized for LMKCDEY (using Gaussian secrets) - // more than 128 bits of security for quantum computer attacks - // optimize runtime by finding a non-power-of-two n for 4 binary inputs STD192Q_4, // more than 192 bits of security for quantum computer attacks - // optimize runtime by finding a non-power-of-two n for 4 binary inputs STD256Q_4, // more than 256 bits of security for quantum computer attacks - // optimize runtime by finding a non-power-of-two n for 4 binary inputs SIGNED_MOD_TEST // special parameter set for confirming the signed modular // reduction in the accumulator updates works correctly }; ``` 具体的参数是: ```cpp constexpr double STD_DEV = 3.19; const std::unordered_map paramsMap({ // numberBits|cyclOrder|latticeParam| mod| modKS| stdDev| baseKS| gadgetBase| baseRK| numAutoKeys| keyDist { TOY, { 27, 1024, 64, 512, PRIME, STD_DEV, 25, 1 << 9, 23, 9, UNIFORM_TERNARY} }, { MEDIUM, { 28, 2048, 422, 1024, 1 << 14, STD_DEV, 1 << 7, 1 << 10, 32, 10, UNIFORM_TERNARY} }, { STD128_LMKCDEY, { 28, 2048, 446, 1024, 1 << 13, STD_DEV, 1 << 5, 1 << 10, 32, 10, GAUSSIAN } }, { STD128_AP, { 27, 2048, 503, 1024, 1 << 14, STD_DEV, 1 << 5, 1 << 9, 32, 10, UNIFORM_TERNARY} }, { STD128, { 27, 2048, 503, 1024, 1 << 14, STD_DEV, 1 << 5, 1 << 9, 32, 10, UNIFORM_TERNARY} }, { STD192, { 37, 4096, 805, 1024, 1 << 15, STD_DEV, 32, 1 << 13, 32, 10, UNIFORM_TERNARY} }, { STD256, { 29, 4096, 990, 2048, 1 << 14, STD_DEV, 1 << 7, 1 << 8, 46, 10, UNIFORM_TERNARY} }, { STD128Q, { 25, 2048, 534, 1024, 1 << 14, STD_DEV, 32, 1 << 7, 32, 10, UNIFORM_TERNARY} }, { STD128Q_LMKCDEY, { 27, 2048, 448, 1024, 1 << 13, STD_DEV, 32, 1 << 9, 32, 10, GAUSSIAN } }, { STD192Q, { 35, 4096, 875, 1024, 1 << 15, STD_DEV, 32, 1 << 12, 32, 10, UNIFORM_TERNARY} }, { STD256Q, { 27, 4096, 1225, 1024, 1 << 16, STD_DEV, 16, 1 << 7, 32, 10, UNIFORM_TERNARY} }, { STD128_3, { 27, 2048, 541, 1024, 1 << 15, STD_DEV, 32, 1 << 7, 32, 10, UNIFORM_TERNARY} }, { STD128_3_LMKCDEY, { 28, 2048, 485, 1024, 1 << 15, STD_DEV, 32, 1 << 10, 32, 10, GAUSSIAN } }, { STD128Q_3, { 50, 4096, 575, 2048, 1 << 15, STD_DEV, 32, 1 << 25, 32, 10, UNIFORM_TERNARY} }, { STD128Q_3_LMKCDEY, { 27, 2048, 524, 1024, 1 << 15, STD_DEV, 32, 1 << 9, 32, 10, GAUSSIAN } }, { STD192Q_3, { 34, 4096, 922, 2048, 1 << 16, STD_DEV, 16, 1 << 12, 32, 10, UNIFORM_TERNARY} }, { STD256Q_3, { 27, 4096, 1400, 4096, 1 << 16, STD_DEV, 21, 1 << 6, 32, 10, UNIFORM_TERNARY} }, { STD128_4, { 27, 2048, 541, 2048, 1 << 15, STD_DEV, 32, 1 << 7, 32, 10, UNIFORM_TERNARY} }, { STD128_4_LMKCDEY, { 28, 2048, 522, 2048, 1 << 15, STD_DEV, 32, 1 << 10, 32, 10, GAUSSIAN } }, { STD128Q_4, { 50, 4096, 647, 2048, 1 << 16, STD_DEV, 16, 1 << 25, 32, 10, UNIFORM_TERNARY} }, { STD128Q_4_LMKCDEY, { 27, 2048, 524, 2048, 1 << 15, STD_DEV, 32, 1 << 7, 32, 10, GAUSSIAN } }, { STD192Q_4, { 34, 4096, 980, 2048, 1 << 17, STD_DEV, 16, 1 << 12, 32, 10, UNIFORM_TERNARY} }, { STD256Q_4, { 27, 4096, 1625, 4096, 1 << 21, STD_DEV, 16, 1 << 6, 32, 10, UNIFORM_TERNARY} }, { SIGNED_MOD_TEST, { 28, 2048, 512, 1024, PRIME, STD_DEV, 25, 1 << 7, 23, 10, UNIFORM_TERNARY} }, }); ``` ## BinFHE `class BinFHEScheme`,实现了 TFHE / FHEW 方案 * ```cpp explicit BinFHEScheme(BINFHE_METHOD method); ``` 构造器,自举方法有**三种**: ```cpp enum BINFHE_METHOD { INVALID_METHOD = 0, AP, // Ducas-Micciancio variant GINX, // Chillotti-Gama-Georgieva-Izabachene variant LMKCDEY, // Lee-Micciancio-Kim-Choi-Deryabin-Eom-Yoo variant, ia.cr/2022/198 }; ``` * ```cpp RingGSWBTKey KeyGen(const std::shared_ptr& params, ConstLWEPrivateKey& LWEsk, KEYGEN_MODE keygenMode) const; ``` 根据 LWE 和 RGSW 的参数,以及 LWE 私钥,生成对应的**自举密钥** * `Bootstrap, EvalBinGate, EvalNOT, EvalFunc, EvalFloor, EvalSign, EvalDecomp`,执行 **BTS / PBS / FDFB** * `BootstrapGateCore, BootstrapFuncCore, BootstrapFunc`,私有接口,最底层的自举实现 * ```cpp static uint32_t checkInputFunction(const std::vector& lut, NativeInteger mod); ``` **判断 LUT 的性质**:反循环(0),周期(1),任意(2) ## LWE ### param `class LWECryptoParams : public Serializable`,描述 LWE 的参数 * ```cpp explicit LWECryptoParams(uint32_t n, uint32_t N, const NativeInteger& q, const NativeInteger& Q, const NativeInteger& q_KS, double std, uint32_t baseKS, SecretKeyDist keyDist = UNIFORM_TERNARY) ``` 构造器 * ```cpp NativeInteger m_q{}; // modulus for the additive LWE scheme NativeInteger m_Q{}; // modulus for the RingGSW/RingLWE scheme NativeInteger m_qKS{}; // modulus for key-switching uint32_t m_n{}; // lattice parameter for the additive LWE scheme uint32_t m_N{}; // ring dimension for RingGSW/RingLWE scheme uint32_t m_baseKS{}; // Base used in key switching SecretKeyDist m_keyDist{SecretKeyDist::UNIFORM_TERNARY}; // Secret key distribution: GAUSSIAN, UNIFORM_TERNARY, etc. DiscreteGaussianGeneratorImpl m_dgg; // Error distribution generator DiscreteGaussianGeneratorImpl m_ks_dgg; // Error distribution generator for key switching ``` 私有属性:三个密文模数( q ≤ q K S ≤ Q q \\le q_{KS} \\le Q q≤qKS≤Q),两个维度( n n n 任意, N N N 是二的幂次),数字分解基,私钥分布,噪声采样器 ### PKE `class LWEEncryptionScheme`,定义了 LWE 加密方案 * ```cpp LWEPrivateKey KeyGen(usint size, const NativeInteger& modulus) const; ``` 生成 ( q , n ) (q,n) (q,n)-LWE 的私钥(用于加密数据) * ```cpp LWEKeyPair KeyGenPair(const std::shared_ptr& params) const; ``` 生成 ( Q , N ) (Q,N) (Q,N)-LWE 的公私钥(用于自举) * ```cpp LWECiphertext Encrypt(const std::shared_ptr& params, ConstLWEPrivateKey& sk, LWEPlaintext m, LWEPlaintextModulus p = 4, NativeInteger mod = 0) const; LWECiphertext EncryptN(const std::shared_ptr& params, ConstLWEPublicKey& pk, LWEPlaintext m, LWEPlaintextModulus p = 4, NativeInteger mod = 0) const; ``` 对称加密、公钥加密 * ```cpp LWECiphertext NoiselessEmbedding(const std::shared_ptr& params, LWEPlaintext m) const; ``` 无噪声的密文 * `EvalAddEq, EvalAddConstEq, EvalSubEq, EvalSubEq2, valMultConstEq`,线性同态 * ```cpp LWECiphertext ModSwitch(NativeInteger q, ConstLWECiphertext& ctQ) const; ``` 模切换,从 Q Q Q 到 q q q(除法 + 舍入) * ```cpp LWESwitchingKey KeySwitchGen(const std::shared_ptr& params, ConstLWEPrivateKey& sk, ConstLWEPrivateKey& skN) const; LWECiphertext KeySwitch(const std::shared_ptr& params, ConstLWESwitchingKey& K, ConstLWECiphertext& ctQN) const; ``` 密钥切换,从 N N N 到 n n n,使用 **BV-type KS** 过程, 机器字的 Digit-decomposition(不必使用 RNS) ### ciphertext `class LWECiphertextImpl : public Serializable`,密文格式 * ```cpp LWECiphertextImpl(const NativeVector& a, const NativeInteger& b); ``` 构造器 * ```cpp NativeVector m_a{}; NativeInteger m_b{}; NativeInteger m_p = 4; // pt modulus ``` 私有成员,存储数据 * `GetA, GetB, SetA, SetB`,密文的读写 ### priv-key `class LWEPrivateKeyImpl : public Serializable`,私钥的结构 * ```cpp NativeVector m_s{}; ``` 私有成员,存储私钥向量 ### pub-key `class LWEPublicKeyImpl : public Serializable`,公钥的结构 * ```cpp std::vector m_A; NativeVector m_v; ``` 私有成员,零消息的若干个 LWE 密文 ### KSK `class LWESwitchingKeyImpl : public Serializable`,密钥切换密钥的结构 * ```cpp std::vector>> m_keyA; std::vector>> m_keyB; ``` 私有成员,私钥的 Powers-of-base 的若干个 LWE 密文 ## RGSW ### param `class RingGSWCryptoParams : public Serializable`,描述 RGSW / RLWE 的参数 * ```cpp explicit RingGSWCryptoParams(uint32_t N, NativeInteger Q, NativeInteger q, uint32_t baseG, uint32_t baseR, BINFHE_METHOD method, double std, SecretKeyDist keyDist = UNIFORM_TERNARY, bool signEval = false, uint32_t numAutoKeys = 10); ``` 构造器 * ```cpp void RingGSWCryptoParams::PreCompute(bool signEval); ``` 预计算:Powers-of-base(AP-type 的分解 B R i B_R\^i BRi、RGSW 的分解 B G j B_G\^j BGj),gate-constants(布尔门的 PBS 用到),多项式 N T T ( X k − 1 ) NTT(X\^k-1) NTT(Xk−1)(GINX-type 中的 CMux) ### eval-key `class RingGSWEvalKeyImpl : public Serializable`,定义了 Eval-Key(使用 RLWE 加密某个单项式 c i X i c_iX\^i ciXi 及其和私钥乘积 c i X i ⋅ s k N c_iX\^i \\cdot sk_N ciXi⋅skN 的 Powers-of-base,组成一个 RGSW 密文) * ```cpp std::vector> m_elements; ``` 私有成员,存储了**单个** RGSW 密文(分解 + 内积 = 强线性同态) * ```cpp explicit RingGSWEvalKeyImpl(const std::vector>& elements); ``` 构造器 * ```cpp void SetFormat(const Format format); ``` 实现 `m_elements` 的 NTT/INTT 转换,其中 `enum Format { EVALUATION = 0, COEFFICIENT = 1 };` ### acc-key `class RingGSWACCKeyImpl : public Serializable`,定义了 ACC-Key(使用 GSW 加密许多的单项式组成自举密钥,\[DM15\] 加密 X s i v B R j X\^{s_ivB_R\^j} XsivBRj,\[CGGI16\] 加密 s i ( u ) s_i\^{(u)} si(u),\[LMK+23\] 加密 X s i X\^{s_i} Xsi) * ```cpp std::vector>> m_key; ``` `RingGSWEvalKey`(RGSW 密文)的**三维数组** (FHEW 分别枚举 s i , i = 1 , ⋯   , n s_i,i=1,\\cdots,n si,i=1,⋯,n 和 v = 1 , ⋯   , B R − 1 v=1,\\cdots,B_R-1 v=1,⋯,BR−1 以及 B R j , j = 0 , 1 , ⋯   , ⌊ log ⁡ q ⌋ B_R\^j,j=0,1,\\cdots,\\lfloor\\log q\\rfloor BRj,j=0,1,⋯,⌊logq⌋) * ```cpp explicit RingGSWACCKeyImpl(const std::vector>>& key); ``` 构造器 ### ACC `class RingGSWAccumulator`,定义了盲旋转的接口 * ```cpp virtual RingGSWACCKey KeyGenAcc(const std::shared_ptr& params, const NativePoly& skNTT, ConstLWEPrivateKey& LWEsk) const; ``` 生成自举密钥,虚拟的 * ```cpp virtual void EvalAcc(const std::shared_ptr& params, ConstRingGSWACCKey& ek, RLWECiphertext& acc, const NativeVector& a) const; ``` 执行盲旋转,虚拟的 * ```cpp void SignedDigitDecompose(const std::shared_ptr& params, const const NativePoly& input std::vector& output) const; ``` 将环元素做 **approximate gadget decomposition** ,用于 RGSW 同态乘法。对于系数 c ∈ \[ − q / 2 , q / 2 ) c \\in \[-q/2,q/2) c∈\[−q/2,q/2),首先把 \[ c \] B \[c\]_B \[c\]B 删除(这是干嘛?),然后对 ( c − \[ c \] B ) / B (c-\[c\]_B)/B (c−\[c\]B)/B 执行 B B B-进制数字分解。 ### DM `class RingGSWAccumulatorDM final : public RingGSWAccumulator`,实现了 \[DM15\] 的盲旋转算法 * ```cpp RingGSWACCKey KeyGenAcc(const std::shared_ptr& params, const NativePoly& skNTT, ConstLWEPrivateKey& LWEsk) const override; ``` 生成自举密钥,形如 R G S W ( X s i v B R j ) RGSW(X\^{s_ivB_R\^j}) RGSW(XsivBRj),其中 v ∈ \[ B R \] v \\in \[B_R\] v∈\[BR

cpp 复制代码
void EvalAcc(const std::shared_ptr<RingGSWCryptoParams>& params, ConstRingGSWACCKey& ek, RLWECiphertext& acc,
                 const NativeVector& a) const override;

执行盲旋转(数字分解 + 子集和

CGGI

class RingGSWAccumulatorCGGI final : public RingGSWAccumulator,实现了 [CGGI16] 的盲旋转算法

cpp 复制代码
RingGSWACCKey KeyGenAcc(const std::shared_ptr<RingGSWCryptoParams>& params, const NativePoly& skNTT,
                            ConstLWEPrivateKey& LWEsk) const override;

生成自举密钥,仅支持 ternary secrets ,选取 U = { 1 , − 1 } U=\{1,-1\} U={1,−1},形如 R G S W ( s i ( u ) ) RGSW(s_i^{(u)}) RGSW(si(u)),满足 s i = s i ( 1 ) − s i ( − 1 ) s_i = s_i^{(1)} - s_i^{(-1)} si=si(1)−si(−1)
*

cpp 复制代码
void EvalAcc(const std::shared_ptr<RingGSWCryptoParams>& params, ConstRingGSWACCKey& ek, RLWECiphertext& acc,
                 const NativeVector& a) const override;

执行盲旋转(CMux-based OBDD ),分别关于 s i ( 1 ) , s i ( 1 ) s_i^{(1)}, s_i^{(1)} si(1),si(1) 执行外积,并没有合并

LMK+

class RingGSWAccumulatorLMKCDEY final : public RingGSWAccumulator,实现了 [LMK+23] 的盲旋转算法

cpp 复制代码
RingGSWACCKey KeyGenAcc(const std::shared_ptr<RingGSWCryptoParams>& params, const NativePoly& skNTT,
                            ConstLWEPrivateKey& LWEsk) const override;

生成自举密钥,一部分形如 R G S W ( X s i ) RGSW(X^{s_i}) RGSW(Xsi),另一部分形如 R G S W ( s k N ( X − g ) ) RGSW(sk_N(X^{-g})) RGSW(skN(X−g)) 以及 R G S W ( s k N ( X g i ) ) RGSW(sk_N(X^{g^i})) RGSW(skN(Xgi)),其中 i = 1 , 2 , ⋯   , w i=1,2,\cdots,w i=1,2,⋯,w,窗口大小 w w w
*

cpp 复制代码
void EvalAcc(const std::shared_ptr<RingGSWCryptoParams>& params, ConstRingGSWACCKey& ek, RLWECiphertext& acc,
                 const NativeVector& a) const override;

执行盲旋转(Galois 自同构

相关推荐
CyberSecurity_zhang11 小时前
密码学常见填充模式汇总
信息安全·密码学
ALe要立志成为web糕手17 小时前
SESSION_UPLOAD_PROGRESS 的利用
python·web安全·网络安全·ctf
jingshaoyou1 天前
Strongswan linked_list_t链表 注释可独立运行测试
数据结构·链表·网络安全·list
鹅肝手握高V五色1 天前
Wireshark入门教程:如何抓取和过滤网络数据包
websocket·网络协议·tcp/ip·http·网络安全·https·udp
christine-rr1 天前
密码学基础——古典密码学
密码学
程序员鱼皮1 天前
感觉程序员要被 AI 淘汰了?学什么才有机会?
计算机·ai·程序员·互联网·编程经验
nixiaoge1 天前
RCE漏洞
网络安全
禾木KG1 天前
网络安全-等级保护(等保) 1-0 等级保护制度公安部前期发文总结
网络安全
网络抓包与爬虫1 天前
Wireshark——抓包分析
websocket·网络协议·tcp/ip·http·网络安全·https·udp
仙女很美哦1 天前
Flutter视频播放、Flutter VideoPlayer 视频播放组件精要
websocket·网络协议·tcp/ip·http·网络安全·https·udp