使用OpenCV计算滑块缺口(2)

上一篇 openCV 计算滑块缺口,执行可能出现问题,这一篇文章,是上一版本的补充(https://blog.csdn.net/weixin_42883164/article/details/137604965)

实现计算滑块缺口的步骤:

接口部分参照上述文章,重写detect_displacement 方法:

bash 复制代码
def detect_displacement(img_slider_path, image_background_path):
    """detect displacement"""
    # # 参数0是灰度模式
    image = cv2.imread(img_slider_path, 0)
    # print("灰度模式")
    # show(image)

    image_cv2 = cv2.imread(img_slider_path)

    gray = cv2.cvtColor(image_cv2, cv2.COLOR_BGR2GRAY)
    # print("BGR模式")
    # show(gray)

    # 3. 二值化处理
    _, binary_image = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
    # print("二值化")
    # show(binary_image)

    # 4. 查找轮廓
    contours, hierarchy = cv2.findContours(binary_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)


    # 5. 在原图上绘制轮廓
    image_with_contours = cv2.drawContours(image, contours, -1, (0, 255, 0), 1)  # 最后一个参数是轮廓线条的厚度

    # print("绘制轮廓")
    # show(image_with_contours)

    template = cv2.imread(image_background_path, 0)
    # show(template)

    #使用 matchTemplate 函数进行模板匹配
    res = cv2.matchTemplate(_tran_canny(image), _tran_canny(template), cv2.TM_CCOEFF_NORMED)
    # 最小值,最大值,并得到最小值, 最大值的索引
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

    print(max_val)
    print(max_loc)

    # top_left = min_loc[0]  # 横坐标
    # 展示圈出来的区域
    x, y = max_loc  # 获取x,y位置坐标
    w, h = image.shape[::-1]  # 宽高
    cv2.rectangle(template, (x, y), (x+w, y+h), (0, 0, 255), 2) #左上 右下 边框颜色,线条厚度
    show(template)
    top_left = x+w
    return top_left

实现效果:

相关推荐
audyxiao00143 分钟前
人工智能顶级期刊PR论文解读|HCRT:基于相关性感知区域的混合网络,用于DCE-MRI图像中的乳腺肿瘤分割
网络·人工智能·智慧医疗·肿瘤分割
零售ERP菜鸟1 小时前
IT价值证明:从“成本中心”到“增长引擎”的确定性度量
大数据·人工智能·职场和发展·创业创新·学习方法·业界资讯
童话名剑2 小时前
目标检测(吴恩达深度学习笔记)
人工智能·目标检测·滑动窗口·目标定位·yolo算法·特征点检测
木卫四科技2 小时前
【木卫四 CES 2026】观察:融合智能体与联邦数据湖的安全数据运营成为趋势
人工智能·安全·汽车
珠海西格电力7 小时前
零碳园区有哪些政策支持?
大数据·数据库·人工智能·物联网·能源
启途AI8 小时前
2026免费好用的AIPPT工具榜:智能演示文稿制作新纪元
人工智能·powerpoint·ppt
TH_18 小时前
35、AI自动化技术与职业变革探讨
运维·人工智能·自动化
楚来客8 小时前
AI基础概念之八:Transformer算法通俗解析
人工智能·算法·transformer
风送雨8 小时前
FastMCP 2.0 服务端开发教学文档(下)
服务器·前端·网络·人工智能·python·ai
效率客栈老秦8 小时前
Python Trae提示词开发实战(8):数据采集与清洗一体化方案让效率提升10倍
人工智能·python·ai·提示词·trae