使用OpenCV计算滑块缺口(2)

上一篇 openCV 计算滑块缺口,执行可能出现问题,这一篇文章,是上一版本的补充(https://blog.csdn.net/weixin_42883164/article/details/137604965)

实现计算滑块缺口的步骤:

接口部分参照上述文章,重写detect_displacement 方法:

bash 复制代码
def detect_displacement(img_slider_path, image_background_path):
    """detect displacement"""
    # # 参数0是灰度模式
    image = cv2.imread(img_slider_path, 0)
    # print("灰度模式")
    # show(image)

    image_cv2 = cv2.imread(img_slider_path)

    gray = cv2.cvtColor(image_cv2, cv2.COLOR_BGR2GRAY)
    # print("BGR模式")
    # show(gray)

    # 3. 二值化处理
    _, binary_image = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
    # print("二值化")
    # show(binary_image)

    # 4. 查找轮廓
    contours, hierarchy = cv2.findContours(binary_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)


    # 5. 在原图上绘制轮廓
    image_with_contours = cv2.drawContours(image, contours, -1, (0, 255, 0), 1)  # 最后一个参数是轮廓线条的厚度

    # print("绘制轮廓")
    # show(image_with_contours)

    template = cv2.imread(image_background_path, 0)
    # show(template)

    #使用 matchTemplate 函数进行模板匹配
    res = cv2.matchTemplate(_tran_canny(image), _tran_canny(template), cv2.TM_CCOEFF_NORMED)
    # 最小值,最大值,并得到最小值, 最大值的索引
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

    print(max_val)
    print(max_loc)

    # top_left = min_loc[0]  # 横坐标
    # 展示圈出来的区域
    x, y = max_loc  # 获取x,y位置坐标
    w, h = image.shape[::-1]  # 宽高
    cv2.rectangle(template, (x, y), (x+w, y+h), (0, 0, 255), 2) #左上 右下 边框颜色,线条厚度
    show(template)
    top_left = x+w
    return top_left

实现效果:

相关推荐
KuaFuAI3 分钟前
微软推出的AI无代码编程微应用平台GitHub Spark和国产AI原生无代码工具CodeFlying比到底咋样?
人工智能·github·aigc·ai编程·codeflying·github spark·自然语言开发软件
Make_magic12 分钟前
Git学习教程(更新中)
大数据·人工智能·git·elasticsearch·计算机视觉
shelly聊AI17 分钟前
语音识别原理:AI 是如何听懂人类声音的
人工智能·语音识别
源于花海20 分钟前
论文学习(四) | 基于数据驱动的锂离子电池健康状态估计和剩余使用寿命预测
论文阅读·人工智能·学习·论文笔记
雷龙发展:Leah20 分钟前
离线语音识别自定义功能怎么用?
人工智能·音频·语音识别·信号处理·模块测试
4v1d24 分钟前
边缘计算的学习
人工智能·学习·边缘计算
风之馨技术录28 分钟前
智谱AI清影升级:引领AI视频进入音效新时代
人工智能·音视频
sniper_fandc37 分钟前
深度学习基础—Seq2Seq模型
人工智能·深度学习
goomind41 分钟前
深度学习模型评价指标介绍
人工智能·python·深度学习·计算机视觉
youcans_41 分钟前
【微软报告:多模态基础模型】(2)视觉理解
人工智能·计算机视觉·大语言模型·多模态·视觉理解