使用OpenCV计算滑块缺口(2)

上一篇 openCV 计算滑块缺口,执行可能出现问题,这一篇文章,是上一版本的补充(https://blog.csdn.net/weixin_42883164/article/details/137604965)

实现计算滑块缺口的步骤:

接口部分参照上述文章,重写detect_displacement 方法:

bash 复制代码
def detect_displacement(img_slider_path, image_background_path):
    """detect displacement"""
    # # 参数0是灰度模式
    image = cv2.imread(img_slider_path, 0)
    # print("灰度模式")
    # show(image)

    image_cv2 = cv2.imread(img_slider_path)

    gray = cv2.cvtColor(image_cv2, cv2.COLOR_BGR2GRAY)
    # print("BGR模式")
    # show(gray)

    # 3. 二值化处理
    _, binary_image = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
    # print("二值化")
    # show(binary_image)

    # 4. 查找轮廓
    contours, hierarchy = cv2.findContours(binary_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)


    # 5. 在原图上绘制轮廓
    image_with_contours = cv2.drawContours(image, contours, -1, (0, 255, 0), 1)  # 最后一个参数是轮廓线条的厚度

    # print("绘制轮廓")
    # show(image_with_contours)

    template = cv2.imread(image_background_path, 0)
    # show(template)

    #使用 matchTemplate 函数进行模板匹配
    res = cv2.matchTemplate(_tran_canny(image), _tran_canny(template), cv2.TM_CCOEFF_NORMED)
    # 最小值,最大值,并得到最小值, 最大值的索引
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

    print(max_val)
    print(max_loc)

    # top_left = min_loc[0]  # 横坐标
    # 展示圈出来的区域
    x, y = max_loc  # 获取x,y位置坐标
    w, h = image.shape[::-1]  # 宽高
    cv2.rectangle(template, (x, y), (x+w, y+h), (0, 0, 255), 2) #左上 右下 边框颜色,线条厚度
    show(template)
    top_left = x+w
    return top_left

实现效果:

相关推荐
静心问道10 分钟前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
说私域12 分钟前
基于开源AI大模型、AI智能名片与S2B2C商城小程序源码的用户价值引导与核心用户沉淀策略研究
人工智能·开源
亲持红叶13 分钟前
GLU 变种:ReGLU 、 GEGLU 、 SwiGLU
人工智能·深度学习·神经网络·激活函数
说私域14 分钟前
线上协同办公时代:以开源AI大模型等工具培养网感,拥抱职业变革
人工智能·开源
群联云防护小杜15 分钟前
深度隐匿源IP:高防+群联AI云防护防绕过实战
运维·服务器·前端·网络·人工智能·网络协议·tcp/ip
摘星编程21 分钟前
构建智能客服Agent:从需求分析到生产部署
人工智能·需求分析·智能客服·agent开发·生产部署
不爱学习的YY酱24 分钟前
信息检索革命:Perplexica+cpolar打造你的专属智能搜索中枢
人工智能
whaosoft-1432 小时前
51c自动驾驶~合集7
人工智能
刘晓倩5 小时前
Coze智能体开发实战-多Agent综合实战
人工智能·coze
石迹耿千秋6 小时前
迁移学习--基于torchvision中VGG16模型的实战
人工智能·pytorch·机器学习·迁移学习