Transformers x SwanLab:可视化NLP模型训练

HuggingFace 的 Transformers 是目前最流行的深度学习训框架之一(100k+ Star),现在主流的大语言模型(LLaMa系列、Qwen系列、ChatGLM系列等)、自然语言处理模型(Bert系列)等,都在使用Transformers来进行预训练、微调和推理。

SwanLab是一个深度学习实验管理与训练可视化工具,由西安电子科技大学团队打造,融合了Weights & Biases与Tensorboard的特点,能够方便地进行 训练可视化、多实验对比、超参数记录、大型实验管理和团队协作,并支持用网页链接的方式分享你的实验。

你可以使用Transformers快速进行模型训练,同时使用SwanLab进行实验跟踪与可视化。

下面将用一个Bert训练,来介绍如何将Transformers与SwanLab配合起来:

1. 代码中引入SwanLabCallback

python 复制代码
from swanlab.integration.huggingface import SwanLabCallback

SwanLabCallback是适配于Transformers的日志记录类。

SwanLabCallback可以定义的参数有:

  • project、experiment_name、description 等与 swanlab.init 效果一致的参数, 用于SwanLab项目的初始化。
  • 你也可以在外部通过swanlab.init创建项目,集成会将实验记录到你在外部创建的项目中。

2. 传入Trainer

python 复制代码
from swanlab.integration.huggingface import SwanLabCallback
from transformers import Trainer, TrainingArguments
...

# 实例化SwanLabCallback
swanlab_callback = SwanLabCallback()

trainer = Trainer(
    ...
    # 传入callbacks参数
    callbacks=[swanlab_callback],
)

3. 案例-Bert训练

查看在线实验过程:BERT-SwanLab

下面是一个基于Transformers框架,使用BERT模型在imdb数据集上做微调,同时用SwanLab进行可视化的案例代码

python 复制代码
"""
用预训练的Bert模型微调IMDB数据集,并使用SwanLabCallback回调函数将结果上传到SwanLab。
IMDB数据集的1是positive,0是negative。
"""

import torch
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from swanlab.integration.huggingface import SwanLabCallback
import swanlab

def predict(text, model, tokenizer, CLASS_NAME):
    inputs = tokenizer(text, return_tensors="pt")

    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
        predicted_class = torch.argmax(logits).item()

    print(f"Input Text: {text}")
    print(f"Predicted class: {int(predicted_class)} {CLASS_NAME[int(predicted_class)]}")
    return int(predicted_class)
# 加载IMDB数据集
dataset = load_dataset('imdb')

# 加载预训练的BERT tokenizer
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')

# 定义tokenize函数
def tokenize(batch):
    return tokenizer(batch['text'], padding=True, truncation=True)

# 对数据集进行tokenization
tokenized_datasets = dataset.map(tokenize, batched=True)

# 设置模型输入格式
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
tokenized_datasets.set_format('torch', columns=['input_ids', 'attention_mask', 'labels'])

# 加载预训练的BERT模型
model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)

# 设置训练参数
training_args = TrainingArguments(
    output_dir='./results',
    eval_strategy='epoch',
    save_strategy='epoch',
    learning_rate=2e-5,
    per_device_train_batch_size=8,
    per_device_eval_batch_size=8,
    logging_first_step=100,
    # 总的训练轮数
    num_train_epochs=3,
    weight_decay=0.01,
    report_to="none",
    # 单卡训练
)

CLASS_NAME = {0: "negative", 1: "positive"}

# 设置swanlab回调函数
swanlab_callback = SwanLabCallback(project='BERT',
                                   experiment_name='BERT-IMDB',
                                   config={'dataset': 'IMDB', "CLASS_NAME": CLASS_NAME})

# 定义Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_datasets['train'],
    eval_dataset=tokenized_datasets['test'],
    callbacks=[swanlab_callback],
)

# 训练模型
trainer.train()

# 保存模型
model.save_pretrained('./sentiment_model')
tokenizer.save_pretrained('./sentiment_model')

# 测试模型
test_reviews = [
    "I absolutely loved this movie! The storyline was captivating and the acting was top-notch. A must-watch for everyone.",
    "This movie was a complete waste of time. The plot was predictable and the characters were poorly developed.",
    "An excellent film with a heartwarming story. The performances were outstanding, especially the lead actor.",
    "I found the movie to be quite boring. It dragged on and didn't really go anywhere. Not recommended.",
    "A masterpiece! The director did an amazing job bringing this story to life. The visuals were stunning.",
    "Terrible movie. The script was awful and the acting was even worse. I can't believe I sat through the whole thing.",
    "A delightful film with a perfect mix of humor and drama. The cast was great and the dialogue was witty.",
    "I was very disappointed with this movie. It had so much potential, but it just fell flat. The ending was particularly bad.",
    "One of the best movies I've seen this year. The story was original and the performances were incredibly moving.",
    "I didn't enjoy this movie at all. It was confusing and the pacing was off. Definitely not worth watching."
]

model.to('cpu')
text_list = []
for review in test_reviews:
    label = predict(review, model, tokenizer, CLASS_NAME)
    text_list.append(swanlab.Text(review, caption=f"{label}-{CLASS_NAME[label]}"))

if text_list:
    swanlab.log({"predict": text_list})

swanlab.finish()




4. 相关链接

相关推荐
kobe_OKOK_7 分钟前
快递鸟对接发快递后端设计系统
python·django
阿蔹7 分钟前
UI测试自动化-Web-Python-Selenium-2-元素操作、浏览器操作
前端·python·selenium·ui·自动化
寂寞恋上夜11 分钟前
从需求到开发任务:WBS拆解的4个层级(附排期模板)
人工智能·prompt·markdown转xmind·deepseek思维导图
Tipriest_11 分钟前
配置用户pip源与查看当前的pip的源的办法
linux·人工智能·python·pip
机器学习算法与Python实战19 分钟前
DeepSeek-OCR本地部署(1):CUDA 升级12.9,不重启,教程
人工智能·ocr
山野蓝莓酸奶昔28 分钟前
InternNav 环境配置:Failed to build flash_attn解决办法
人工智能·深度学习
Coder_Boy_31 分钟前
基于SpringAI的智能OPS平台AIops介绍
人工智能·spring boot·aiops·faiss
Apifox.32 分钟前
Apifox 12 月更新| AI 生成用例同步生成测试数据、接口文档完整性检测、设计 SSE 流式接口、从 Git 仓库导入数据
前端·人工智能·git·ai·postman·团队开发
冒冒菜菜44 分钟前
根据txt标签文件在图像上生成真实标签框
人工智能·计算机视觉