【RLHF个人笔记】RLHF:Reinforcement Learning from Human Feedback具体过程

【RLHF个人笔记】RLHF:Reinforcement Learning from Human Feedback具体过程

RLHF训练的三个步骤

步骤1:收集数据与有监督训练策略

  1. 从数据集中采样的prompt提问

  2. 数据标注者(人工)给出最合理的回答,组成问答机制对 < Q , A > <Q,A> <Q,A>

  3. 利用问答机制通过SFT有监督精调GPT3.5,得到策略policy

步骤2:收集数据训练奖励模型

  1. 继续采样prompt,将prompt输入一个或多个 LLM 生成对比数据。他们产生了几对提示-答案 < Q , A > <Q,A> <Q,A>
  2. 人类标注者根据模型回答的质量,对回答的好坏进行排序(收集人类反馈)
  3. 得到排序的数据集后,训练奖励模型,奖励模型能够根据输入给出一个标量奖励值,代表人类对这些输出或行为的偏好
  4. 经过充分的训练,奖励模型可以在没有人为干预的情况下对智能体的输出或行为进行打分,以量化其符合人类偏好的程度

    图中的ELO是指建立其人类对于输出的相对排名

步骤3:结合奖励模型利用强化学习算法如PPO算法来优化策略

  1. 再次采样prompt,利用PPO模型(由前面第一步得到的策略初始化)产生结果得到 < Q , A > <Q,A> <Q,A>
  2. 将 < Q , A > <Q,A> <Q,A>输入奖励模型,产生打分(奖励)
  3. 利用奖励信号评估策略的输出,通过强化学习算法来优化策略(比如 PPO模型)
  4. 创建一个循环来优化微调策略:通过新采样的数据,在强化学习过程中,策略会生成新的输出或行为,并根据奖励模型的反馈进行迭代优化。这个过程会不断重复,直到模型的性能达到满意的水平

    policy是给GPT输入文本后输出结果的过程,即GPT推理的过程

整体流程图:

参考内容

1. HuggingFace官方博客:Illustrating Reinforcement Learning from Human Feedback (RLHF)
2. B站里看的一个视频:RLHF大模型加强学习机制原理介绍

相关推荐
序属秋秋秋12 分钟前
《Linux系统编程之进程基础》【进程优先级】
linux·运维·c语言·c++·笔记·进程·优先级
草莓熊Lotso12 分钟前
C++ STL map 系列全方位解析:从基础使用到实战进阶
java·开发语言·c++·人工智能·经验分享·网络协议·everything
zyplayer-doc17 分钟前
升级表格编辑器,AI客服应用支持转人工客服,AI问答风格与性能优化,zyplayer-doc 2.5.6 发布啦!
人工智能·编辑器·飞书·开源软件·创业创新·有道云笔记
~~李木子~~3 小时前
中文垃圾短信分类实验报告
人工智能·分类·数据挖掘
河铃旅鹿3 小时前
Android开发-java版:Framgent
android·java·笔记·学习
AA陈超6 小时前
ASC学习笔记0020:用于定义角色或Actor的默认属性值
c++·笔记·学习·ue5·虚幻引擎
TsingtaoAI7 小时前
企业实训|自动驾驶中的图像处理与感知技术——某央企汽车集团
图像处理·人工智能·自动驾驶·集成学习
王哈哈^_^7 小时前
YOLO11实例分割训练任务——从构建数据集到训练的完整教程
人工智能·深度学习·算法·yolo·目标检测·机器学习·计算机视觉
IMPYLH7 小时前
Lua 的 collectgarbage 函数
开发语言·笔记·junit·单元测试·lua
檐下翻书1738 小时前
从入门到精通:流程图制作学习路径规划
论文阅读·人工智能·学习·算法·流程图·论文笔记