【RLHF个人笔记】RLHF:Reinforcement Learning from Human Feedback具体过程

【RLHF个人笔记】RLHF:Reinforcement Learning from Human Feedback具体过程

RLHF训练的三个步骤

步骤1:收集数据与有监督训练策略

  1. 从数据集中采样的prompt提问

  2. 数据标注者(人工)给出最合理的回答,组成问答机制对 < Q , A > <Q,A> <Q,A>

  3. 利用问答机制通过SFT有监督精调GPT3.5,得到策略policy

步骤2:收集数据训练奖励模型

  1. 继续采样prompt,将prompt输入一个或多个 LLM 生成对比数据。他们产生了几对提示-答案 < Q , A > <Q,A> <Q,A>
  2. 人类标注者根据模型回答的质量,对回答的好坏进行排序(收集人类反馈)
  3. 得到排序的数据集后,训练奖励模型,奖励模型能够根据输入给出一个标量奖励值,代表人类对这些输出或行为的偏好
  4. 经过充分的训练,奖励模型可以在没有人为干预的情况下对智能体的输出或行为进行打分,以量化其符合人类偏好的程度

    图中的ELO是指建立其人类对于输出的相对排名

步骤3:结合奖励模型利用强化学习算法如PPO算法来优化策略

  1. 再次采样prompt,利用PPO模型(由前面第一步得到的策略初始化)产生结果得到 < Q , A > <Q,A> <Q,A>
  2. 将 < Q , A > <Q,A> <Q,A>输入奖励模型,产生打分(奖励)
  3. 利用奖励信号评估策略的输出,通过强化学习算法来优化策略(比如 PPO模型)
  4. 创建一个循环来优化微调策略:通过新采样的数据,在强化学习过程中,策略会生成新的输出或行为,并根据奖励模型的反馈进行迭代优化。这个过程会不断重复,直到模型的性能达到满意的水平

    policy是给GPT输入文本后输出结果的过程,即GPT推理的过程

整体流程图:

参考内容

1. HuggingFace官方博客:Illustrating Reinforcement Learning from Human Feedback (RLHF)
2. B站里看的一个视频:RLHF大模型加强学习机制原理介绍

相关推荐
SEO_juper5 分钟前
生成式引擎优化(GEO)终极指南:优化品牌在对话式AI中的呈现与推荐
人工智能·chatgpt·seo·geo·数字营销
小程故事多_8020 分钟前
AI Agent进阶架构:用渐进式披露驯服复杂性
人工智能·架构
人工智能AI技术1 小时前
【Agent从入门到实践】10 决策模块:Agent如何“思考问题”
人工智能
qq_527887872 小时前
联邦经典算法Fedavg实现
人工智能·深度学习
天天讯通2 小时前
数据公司与AI五大主流合作模式
人工智能
Clarence Liu2 小时前
AI Agent开发(2) - 深入解析 A2A 协议与 Go 实战指南
开发语言·人工智能·golang
综合热讯2 小时前
AUS GLOBAL 荣耀赞助 2026 LIL TOUR 高尔夫嘉年华
人工智能
小饼干超人2 小时前
详解向量数据库中的PQ算法(Product Quantization)
人工智能·算法·机器学习
哥布林学者2 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(三)Word2Vec
深度学习·ai
burning_maple3 小时前
redis笔记
数据库·redis·笔记