14.FreeRTOS 流媒体缓存 Stream Buffer

FreeRTOS 中的 Stream Buffer(流媒体缓存)

在实时操作系统(RTOS)中,处理流媒体数据是一项非常关键的任务。FreeRTOS 提供了一种名为 Stream Buffer(流媒体缓存)的机制,用于高效地管理和传输流式数据,如音频、视频等。

什么是 Stream Buffer?

Stream Buffer 是 FreeRTOS 提供的一种数据结构,专门用于在任务之间传递和处理流式数据。与队列不同,Stream Buffer 适用于大数据块的流式传输,而不是单个数据项的传输。这使得它非常适合用于音频、视频和其他连续数据流的场景。

Stream Buffer 的工作原理

Stream Buffer 的基本操作包括创建、发送和接收数据。它通过一个环形缓冲区来存储数据,使得数据可以连续地写入和读取。以下是其主要操作:

  1. 创建 Stream Buffer :使用 xStreamBufferCreate 函数创建一个新的 Stream Buffer。
  2. 发送数据到 Stream Buffer :任务使用 xStreamBufferSend 将数据发送到缓冲区。
  3. 从 Stream Buffer 接收数据 :任务使用 xStreamBufferReceive 从缓冲区接收数据。

流媒体传输任务处理的示例

下面是一个示例,展示了如何使用 Stream Buffer 实现流水线式任务处理:

cpp 复制代码
#include <Arduino.h>
#include <FreeRTOS.h>
#include <stream_buffer.h>

#define BUFFER_SIZE 1024
#define TRIGGER_LEVEL 1

StreamBufferHandle_t xStreamBuffer;

// Task1: 发送数据到 Stream Buffer
void Task1(void *pvParameters) {
    const char *data = "Task 1 data";
    for (;;) {
        // 模拟 Task1 的工作
        delay(1000);
        Serial.println("Task 1 is sending data");
        xStreamBufferSend(xStreamBuffer, data, strlen(data), portMAX_DELAY);
    }
}

// Task2: 从 Stream Buffer 接收数据并处理
void Task2(void *pvParameters) {
    char buffer[50];
    for (;;) {
        // 从 Stream Buffer 接收数据
        size_t bytesReceived = xStreamBufferReceive(xStreamBuffer, buffer, sizeof(buffer), portMAX_DELAY);
        if (bytesReceived > 0) {
            buffer[bytesReceived] = '\0'; // 确保字符串以 NULL 结尾
            Serial.print("Task 2 received data: ");
            Serial.println(buffer);
            // 模拟 Task2 的工作
            delay(1000);
        }
    }
}

void setup() {
    Serial.begin(115200);

    // 创建 Stream Buffer
    xStreamBuffer = xStreamBufferCreate(BUFFER_SIZE, TRIGGER_LEVEL);
    if (xStreamBuffer == NULL) {
        // 创建失败,处理错误
        while (1);
    }

    // 创建任务
    xTaskCreate(Task1, "Task 1", 10000, NULL, 1, NULL);
    xTaskCreate(Task2, "Task 2", 10000, NULL, 1, NULL);

    // 启动任务调度器
    vTaskStartScheduler();
}

void loop() {
    // loop 函数为空,不需要额外的代码
}

API

使用 Stream Buffer 的步骤

1. 创建 Stream Buffer

要创建一个 Stream Buffer,使用 xStreamBufferCreate 函数:

c 复制代码
StreamBufferHandle_t xStreamBufferCreate(size_t xBufferSizeBytes, size_t xTriggerLevelBytes);

参数

  • xBufferSizeBytes:缓冲区的大小(字节数)。
  • xTriggerLevelBytes:触发接收任务的最小字节数。

返回值

  • 成功时返回 Stream Buffer 的句柄(非 NULL);失败时返回 NULL。

示例:

c 复制代码
StreamBufferHandle_t xStreamBuffer = xStreamBufferCreate(1024, 1);
if (xStreamBuffer == NULL) {
    // 创建失败,处理错误
}
2. 发送数据到 Stream Buffer

使用 xStreamBufferSend 将数据发送到缓冲区:

c 复制代码
size_t xStreamBufferSend(StreamBufferHandle_t xStreamBuffer, const void *pvTxData, size_t xDataLengthBytes, TickType_t xTicksToWait);

参数

  • xStreamBuffer:Stream Buffer 的句柄。
  • pvTxData:要发送的数据指针。
  • xDataLengthBytes:发送的数据长度(字节数)。
  • xTicksToWait:等待时间(滴答数)。

返回值

  • 成功发送的数据字节数。如果返回值小于 xDataLengthBytes,则表示在 xTicksToWait 时间内没有足够的空间发送所有数据。

示例:

c 复制代码
const char *data = "Hello, FreeRTOS!";
size_t bytesSent = xStreamBufferSend(xStreamBuffer, data, strlen(data), portMAX_DELAY);
if (bytesSent < strlen(data)) {
    // 发送的数据不完整,处理错误
}
3. 从 Stream Buffer 接收数据

使用 xStreamBufferReceive 从缓冲区接收数据:

c 复制代码
size_t xStreamBufferReceive(StreamBufferHandle_t xStreamBuffer, void *pvRxData, size_t xBufferLengthBytes, TickType_t xTicksToWait);

参数

  • xStreamBuffer:Stream Buffer 的句柄。
  • pvRxData:接收数据的缓冲区指针。
  • xBufferLengthBytes:接收缓冲区的大小(字节数)。
  • xTicksToWait:等待时间(滴答数)。

返回值

  • 成功接收的数据字节数。如果返回值小于 xBufferLengthBytes,则表示在 xTicksToWait 时间内没有接收到足够的数据。

示例:

c 复制代码
char buffer[50];
size_t bytesReceived = xStreamBufferReceive(xStreamBuffer, buffer, sizeof(buffer), portMAX_DELAY);
if (bytesReceived > 0) {
    buffer[bytesReceived] = '\0'; // 确保字符串以 NULL 结尾
    Serial.println(buffer);
} else {
    // 接收失败,处理错误
}

其他 Stream Buffer API

1. xStreamBufferCreateStatic

创建一个静态分配的 Stream Buffer。

c 复制代码
StreamBufferHandle_t xStreamBufferCreateStatic(size_t xBufferSizeBytes, size_t xTriggerLevelBytes, uint8_t *pucStreamBufferStorageArea, StaticStreamBuffer_t *pxStaticStreamBuffer);

参数

  • xBufferSizeBytes:缓冲区的大小(字节数)。
  • xTriggerLevelBytes:触发接收任务的最小字节数。
  • pucStreamBufferStorageArea:指向预先分配的缓冲区存储区。
  • pxStaticStreamBuffer:指向预先分配的 StaticStreamBuffer_t 结构。

返回值

  • 成功时返回 Stream Buffer 的句柄(非 NULL);失败时返回 NULL。
2. xStreamBufferReset

重置 Stream Buffer,使其变为空。

c 复制代码
BaseType_t xStreamBufferReset(StreamBufferHandle_t xStreamBuffer);

参数

  • xStreamBuffer:Stream Buffer 的句柄。

返回值

  • 如果成功重置 Stream Buffer,则返回 pdPASS;如果在 Stream Buffer 上有任务阻塞,则返回 pdFAIL。

示例:

c 复制代码
if (xStreamBufferReset(xStreamBuffer) == pdPASS) {
    // 重置成功
} else {
    // 重置失败,处理错误
}
3. xStreamBufferSpacesAvailable

获取 Stream Buffer 中可用的空闲空间(字节数)。

c 复制代码
size_t xStreamBufferSpacesAvailable(StreamBufferHandle_t xStreamBuffer);

参数

  • xStreamBuffer:Stream Buffer 的句柄。

返回值

  • Stream Buffer 中当前可用的空闲空间,以字节为单位。

示例:

c 复制代码
size_t spaceAvailable = xStreamBufferSpacesAvailable(xStreamBuffer);
Serial.print("Space available: ");
Serial.println(spaceAvailable);
4. xStreamBufferBytesAvailable

获取 Stream Buffer 中可读取的字节数。

c 复制代码
size_t xStreamBufferBytesAvailable(StreamBufferHandle_t xStreamBuffer);

参数

  • xStreamBuffer:Stream Buffer 的句柄。

返回值

  • Stream Buffer 中当前可读取的字节数。

示例:

c 复制代码
size_t bytesAvailable = xStreamBufferBytesAvailable(xStreamBuffer);
Serial.print("Bytes available: ");
Serial.println(bytesAvailable);
5. xStreamBufferSetTriggerLevel

设置触发接收任务的最小字节数。

c 复制代码
BaseType_t xStreamBufferSetTriggerLevel(StreamBufferHandle_t xStreamBuffer, size_t xTriggerLevel);

参数

  • xStreamBuffer:Stream Buffer 的句柄。
  • xTriggerLevel:触发级别(字节数)。

返回值

  • 如果成功设置触发级别,则返回 pdPASS;如果提供的 xTriggerLevel 超过缓冲区大小,则返回 pdFAIL。

示例:

c 复制代码
if (xStreamBufferSetTriggerLevel(xStreamBuffer, 10) == pdPASS) {
    // 设置成功
} else {
    // 设置失败,处理错误
}
6. vStreamBufferDelete

删除 Stream Buffer,释放分配的内存。

c 复制代码
void vStreamBufferDelete(StreamBufferHandle_t xStreamBuffer);

参数

  • xStreamBuffer:Stream Buffer 的句柄。

返回值

  • 无返回值。

示例:

c 复制代码
vStreamBufferDelete(xStreamBuffer);

结论

FreeRTOS 的 Stream Buffer 提供了一种高效的机制来处理和传输流媒体数据。通过合理使用 Stream Buffer,可以在嵌入式系统中实现稳定可靠的流媒体数据处理。在实际应用中,我们应根据具体需求调整缓冲区大小和触发级别,并优化数据处理流程,以实现最佳性能。

相关推荐
DCTANT25 分钟前
【原创】国产化适配-全量迁移MySQL数据到OpenGauss数据库
java·数据库·spring boot·mysql·opengauss
水木兰亭1 小时前
数据结构之——树及树的存储
数据结构·c++·学习·算法
CoderCodingNo2 小时前
【GESP】C++四级考试大纲知识点梳理, (7) 排序算法基本概念
开发语言·c++·排序算法
AI、少年郎3 小时前
Oracle 进阶语法实战:从多维分析到数据清洗的深度应用(第四课)
数据库·oracle
赤橙红的黄3 小时前
自定义线程池-实现任务0丢失的处理策略
数据库·spring
DataGear3 小时前
如何在DataGear 5.4.1 中快速制作SQL服务端分页的数据表格看板
javascript·数据库·sql·信息可视化·数据分析·echarts·数据可视化
weixin_438335403 小时前
分布式锁实现方式:基于Redis的分布式锁实现(Spring Boot + Redis)
数据库·redis·分布式
秋风&萧瑟3 小时前
【C++】C++中的友元函数和友元类
c++
码不停蹄的玄黓3 小时前
MySQL Undo Log 深度解析:事务回滚与MVCC的核心功臣
数据库·mysql·undo log·回滚日志
Qdgr_4 小时前
价值实证:数字化转型标杆案例深度解析
大数据·数据库·人工智能