构建一个LangChain RAG应用

构建一个LangChain RAG应用

01. 外挂知识库的聊天机器人架构

在 RAG 应用中,会通过外部的检索器/知识库检索人类的提问,然后将检索到的信息填充到提示模板中,一起传递给大语言模型,让其生成特定的内容,无论 RAG 应用有多么复杂,底层一定少不了这个步骤,这也是 RAG 的基础架构。

所以在 LangChain 中,也可以按照上述的流程图,将聊天机器人添加上知识库问答功能,思路其实非常简单:

  1. 和 Postgres 一样实例化一个全局的 Weaviate 向量数据库,避免每次调用时才进行连接,提升效率。
  2. 在聊天应用中,将 Weaviate 转换成检索器,并将生成的 Document 列表转换成字符串。
  3. 将处理好的检索器拼接到 LCEL 链输入字典中,用户提问时,检索对应内容并填充到 Prompt 模板中,从而实现知识外挂。

02. 外挂知识库的聊天机器人示例

在 LLMOps 项目中,我们对接的是 Weaviate 向量数据库,可以使用云端的向量数据库,也可以使用 Docker 搭建的向量数据库,两者并没有使用差异,修改后的代码如下。

集成的向量数据库服务

internal/service/vector_database_service.py

import os

import weaviate

from injector import inject

from langchain_core.documents import Document

from langchain_core.vectorstores import VectorStoreRetriever

from langchain_openai import OpenAIEmbeddings

from langchain_weaviate import WeaviateVectorStore

from weaviate import WeaviateClient

@inject

class VectorDatabaseService:

"""向量数据库服务"""

client: WeaviateClient

vector_store: WeaviateVectorStore

def init(self):

"""构造函数,完成向量数据库服务的客户端+LangChain向量数据库实例的创建"""

1.创建/连接weaviate向量数据库

self.client = weaviate.connect_to_local(

host=os.getenv("WEAVIATE_HOST"),

port=int(os.getenv("WEAVIATE_PORT"))

)

2.创建LangChain向量数据库

self.vector_store = WeaviateVectorStore(

client=self.client,

index_name="Dataset",

text_key="text",

embedding=OpenAIEmbeddings(model="text-embedding-3-small")

)

def get_retriever(self) -> VectorStoreRetriever:

"""获取检索器"""

return self.vector_store.as_retriever()

@classmethod

def combine_documents(cls, documents: list[Document]) -> str:

"""将对应的文档列表使用换行符进行合并"""

return "\n\n".join([document.page_content for document in documents])

配置信息:

Weaviate向量数据库配置

WEAVIATE_HOST=192.168.2.120

WEAVIATE_PORT=8080

聊天机器人处理器:

def debug(self, app_id: UUID):

4.创建链应用

retriever = self.vector_database_service.get_retriever() | self.vector_database_service.combine_documents

chain = (RunnablePassthrough.assign(

history=RunnableLambda(self._load_memory_variables) | itemgetter("history"),

context=itemgetter("query") | retriever

) | prompt | llm | StrOutputParser()).with_listeners(on_end=self._save_context)

相关推荐
野犬寒鸦3 小时前
从零起步学习并发编程 || 第六章:ReentrantLock与synchronized 的辨析及运用
java·服务器·数据库·后端·学习·算法
wazmlp0018873693 小时前
python第三次作业
开发语言·python
深蓝电商API3 小时前
住宅代理与数据中心代理在爬虫中的选择
爬虫·python
猫头虎3 小时前
2026年AI产业13大趋势预测:Vibe Coding创作者经济元年到来,占冰强专家解读AIGC未来图景
人工智能·开源·prompt·aigc·ai编程·远程工作·agi
User_芊芊君子3 小时前
HCCL高性能通信库编程指南:构建多卡并行训练系统
人工智能·游戏·ai·agent·测评
晚霞的不甘4 小时前
揭秘 CANN 内存管理:如何让大模型在小设备上“轻装上阵”?
前端·数据库·经验分享·flutter·3d
市场部需要一个软件开发岗位4 小时前
JAVA开发常见安全问题:纵向越权
java·数据库·安全
海奥华24 小时前
mysql索引
数据库·mysql
历程里程碑4 小时前
普通数组----合并区间
java·数据结构·python·算法·leetcode·职场和发展·tornado
weixin_395448914 小时前
mult_yolov5_post_copy.c_cursor_0205
c语言·python·yolo