【Leetcode每日一题】 动态规划 - 简单多状态 dp 问题 - 买卖股票的最佳时机含冷冻期(难度⭐⭐)(79)

1. 题目解析

题目链接:309. 买卖股票的最佳时机含冷冻期

这个问题的理解其实相当简单,只需看一下示例,基本就能明白其含义了。

2.算法原理

二、算法思路
1. 状态表示
  • dp[i][0] :表示第 i 天结束后,处于「买入」状态(即持有股票)时的最大利润。
  • dp[i][1] :表示第 i 天结束后,处于「可交易」(即不持有股票且不在冷冻期)状态时的最大利润。
  • dp[i][2] :表示第 i 天结束后,处于「冷冻期」状态时的最大利润。
2. 状态转移方程
  • dp[i][0] 的转移:
    • 要么在 i-1 天已经持有股票(即 dp[i-1][0])。
    • 要么在 i 天买入股票(需确保 i-1 天不在冷冻期,即 dp[i-1][1] - prices[i])。
    • dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i])
  • dp[i][1] 的转移:
    • 要么在 i-1 天处于冷冻期(即 dp[i-1][2])。
    • 要么在 i-1 天就没有股票且不在冷冻期(即 dp[i-1][1])。
    • dp[i][1] = max(dp[i-1][1], dp[i-1][2])
  • dp[i][2] 的转移:
    • 只能在 i-1 天卖出股票后进入冷冻期(即 dp[i-1][0] + prices[i])。
    • dp[i][2] = dp[i-1][0] + prices[i]
3. 初始化
  • dp[0][0] :第一天买入股票,所以 dp[0][0] = -prices[0]
  • dp[0][1]dp[0][2] :第一天无法卖出或进入冷冻期,所以均为 0
4. 填表顺序
  • 按照天数 i1n-1 遍历,并填充 dp 数组。
5. 返回值
  • 最终答案应为最后一天处于「可交易」或「冷冻期」状态时的最大利润,即 max(dp[n-1][1], dp[n-1][2])

3.代码编写

cpp 复制代码
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n = prices.size();
        vector<vector<int>> dp(n, vector<int>(3));
        dp[0][0] = -prices[0];
        for(int i = 1; i < n; i++)
        {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][2]);
            dp[i][2] = dp[i - 1][0] + prices[i];
        }
        return max(dp[n - 1][1], dp[n - 1][2]);
    }
};

The Last

嗯,就是这样啦,文章到这里就结束啦,真心感谢你花时间来读。

觉得有点收获的话,不妨给我点个吧!

如果发现文章有啥漏洞或错误的地方,欢迎私信我或者在评论里提醒一声~

相关推荐
爱coding的橙子12 分钟前
每日算法刷题Day78:10.23:leetcode 一般树7道题,用时1h30min
算法·leetcode·深度优先
Swift社区14 分钟前
LeetCode 403 - 青蛙过河
算法·leetcode·职场和发展
地平线开发者16 分钟前
三种 Badcase 精度验证方案详解与 hbm_infer 部署实录
算法·自动驾驶
papership26 分钟前
【入门级-算法-5、数值处理算法:高精度的减法】
算法·1024程序员节
lingran__30 分钟前
算法沉淀第十天(牛客2025秋季算法编程训练联赛2-基础组 和 奇怪的电梯)
c++·算法
DuHz42 分钟前
基于MIMO FMCW雷达的二维角度分析多径抑制技术——论文阅读
论文阅读·物联网·算法·信息与通信·毫米波雷达
Dragon_D.1 小时前
排序算法大全——插入排序
算法·排序算法·c·学习方法
大数据张老师2 小时前
数据结构——红黑树
数据结构·算法·红黑树
Dream it possible!2 小时前
LeetCode 面试经典 150_链表_两数相加 (57_2_C++_中等)
leetcode·链表·面试
自在极意功。2 小时前
动态规划核心原理与高级实战:从入门到精通(Java全解)
java·算法·动态规划·最优子结构·重叠子问题