LeetCode --- 399周赛

题目列表

3162. 优质数对的总数 I

3163. 压缩字符串 III

3164. 优质数对的总数 II

3165. 不包含相邻元素的子序列的最大和

一、优质数对的总数I

这里由于数据范围比较小,我们可以直接暴力枚举,代码如下

cpp 复制代码
class Solution {
public:
    int numberOfPairs(vector<int>& nums1, vector<int>& nums2, int k) {
        int ans = 0;
        for(auto x:nums1){
            for(auto y:nums2){
                ans += x%(y*k)==0;
            }
        }
        return ans;
    }
};

二、压缩字符串III

这题也是简单的模拟题,只要统计连续出现的字符个数,将它们拼接称字符串即可,但是要注意一旦连续出现的次数大于十,我们就需要将它进行拆分,比如有20个连续的a,拼接的字符串不能是20a,而应该是9a9a2a,代码如下

cpp 复制代码
class Solution {
public:
    string compressedString(string word) {
        string ans;
        int i = 0, n = word.size();
        while(i < n){
            int j = i++;
            while(i < n && word[j] == word[i])
                i++;
            int m = i - j; // 字符word[j]连续出现的个数
            while(m >= 10){
                ans += '9';
                ans += word[j];
                m -= 9;
            }
            if(m) ans += to_string(m) + word[j];
        }
        return ans;
    }
};

三、优质数对的总数II

题目和第一题相同,但是数据范围被扩大了,不能暴力枚举了,该如何做?

题目要求nums1[i]%k*nums2[j]==0的数对个数,我们有两种思路:

1、枚举统计nums1数组元素的因子有哪些,然后遍历统计nums2[j]*k占了多少

2、枚举统计nums2数组元素*k的倍数有哪些,然后统计nums1数组元素占了多少

两种方法都可以,在代码中我们会算它们的时间复杂度

代码如下

cpp 复制代码
class Solution {
    // 1、枚举统计nums1数组元素的因子有哪些,然后遍历统计nums2[j]*k占了多少
public:
    // 时间复杂度 O(n*sqrt(U/k) + m) U = max(nums1)
    long long numberOfPairs(vector<int>& nums1, vector<int>& nums2, int k) {
        
        unordered_map<int,int> mp;
        // O(n*sqrt(U/k)) U = max(nums1)
        for(auto x:nums1){
            if(x%k) continue; // 首先必须是k的倍数
            x /= k;
            for(int i = 1; i*i <= x; i++){
                if(x%i) continue;
                mp[i]++;
                if(i*i!=x) mp[x/i]++;
            }
        }

        // O(m)
        long long ans = 0;
        for(auto x:nums2){
            ans += mp.count(x)?mp[x]:0;
        }
        return ans;
    }
};


class Solution {
    // 2、枚举统计nums2数组元素*k的倍数有哪些,然后遍历统计nums1[i]占了多少
public:
    // 时间复杂度 O(n+m+U*logm) U = max(nums1)
    long long numberOfPairs(vector<int>& nums1, vector<int>& nums2, int k) {
        unordered_map<int,int> cnt1, cnt2, mp;
        int u = INT_MIN;
        for(auto x:nums1){
            u = max(u, x);
            if(x%k) continue;
            cnt1[x/k]++;
        }

        if(cnt1.empty()) return 0;

        for(auto x:nums2){
            cnt2[x]++;
        }

        // 看着像是O(n^2)的时间复杂度
        // 最坏的情况是nums2的元素全都不重复
        // 为1,2,3,....,mx  共有m个数
        //  U/1 + U/2 + U/3 + ... + U/mx
        //= U*(1+1/2+1/3+...+1/mx)
        //= U*logm
        // 1+1/2+1/3+...+1/mx 调和级数的极限,可以直接求1/x的积分,为logx
        // O(U*logm)
        long long ans = 0;
        for(auto [x,c]:cnt2){
            int s = 0;
            for(int i = x; i <= u;i += x){
                s += cnt1.count(i)?cnt1[i]:0;
            }
            ans += (long long)s*c;
        }
        return ans;
    }
};

四、不包含相邻元素的子序列的最大和

这题单独只看求不相邻元素的子序列最大和,是一道标准的打家劫舍问题,建议没写过的先去写一写,如果写过的话,其实很容易想到它可以用动态规划来做,然后你就会开始想如何进行优化,代码如下

cpp 复制代码
class Solution {
    const int MOD = 1e9+7;
public:
    int maximumSumSubsequence(vector<int>& nums, vector<vector<int>>& q) {
        int n = nums.size(), m = q.size();
        int ans = 0;
        vector<long long> dp(n+2);
        for(int i=0;i<n;i++){
            dp[i+2] = max(dp[i]+nums[i],dp[i+1]);
        }
        for(auto v:q){
            int pos = v[0], x = v[1];
            nums[pos] = x;
            bool flag = false;
            for(int i=pos;i<n;i++){
                dp[i+2] = max(dp[i]+nums[i],dp[i+1]);
            }
            ans = (ans%MOD + dp.back()%MOD)%MOD;
        }
        return ans;
    }
};

但实际上这题用动态规划来写是不行的,会超时,可以去试试(java的除外,java给的时间比较宽松,官方应该会调整,这里暂且不论)。

那么这题该如何去做呢?注意,题目进行的是单点更新,区间查询的操作,显然很适合用线段树来做,那么能不能呢?这里就需要考虑一个问题:打家劫舍问题能不能用分治来做?思路如下

代码如下

cpp 复制代码
// 线段树
class Solution {
    const int MOD = 1e9 + 7;
    vector<array<unsigned int,4>> t;
    // f00,f01,f10,f11
    //   0,  1,  2,  3
    void maintain(int o){
        auto& a = t[o<<1], b = t[o<<1|1];
        t[o] = {
            max(a[0]+b[2], a[1]+b[0]), // 00 = max 00+10 01+00
            max(a[0]+b[3], a[1]+b[1]), // 01 = max 00+11 01+01
            max(a[2]+b[2], a[3]+b[0]), // 10 = max 10+10 11+00
            max(a[2]+b[3], a[3]+b[1]) // 11 = max 10+11 11+01
        };
    }

    void build(vector<int>&nums,int o,int l,int r){
        if(l == r){
            // 当只有一个元素时,根据状态定义,只有f11是可以进行选择的为max(0,nums[l]),其余都无法选择为0
            t[o][3] = max(0,nums[l]);
            return;
        }
        int mid = (l+r)>>1;
        build(nums, o<<1, l, mid);
        build(nums, o<<1|1, mid + 1, r);
        maintain(o);
    }

    void update(int o,int l,int r,int i,int val){
        if(l == r){
            t[o][3] = max(val,0);
            return;
        }
        int mid = (l+r)>>1;
        if(i<=mid){
            update(o<<1,l,mid,i,val);
        }else{
            update(o<<1|1,mid+1,r,i,val);
        }
        maintain(o);
    }
public:
    int maximumSumSubsequence(vector<int>& nums, vector<vector<int>>& queries) {
        int n = nums.size();
        t.resize(2<<(32 - __builtin_clz(n)));
        build(nums, 1, 0, n - 1);
        long long ans = 0;
        for(auto&q:queries){
            update(1, 0, n - 1, q[0], q[1]);
            ans += t[1][3];
        }
        return ans%MOD;
    }
};
相关推荐
pianmian136 分钟前
python数据结构基础(7)
数据结构·算法
考试宝2 小时前
国家宠物美容师职业技能等级评价(高级)理论考试题
经验分享·笔记·职场和发展·学习方法·业界资讯·宠物
好奇龙猫3 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
sp_fyf_20243 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
香菜大丸4 小时前
链表的归并排序
数据结构·算法·链表
jrrz08284 小时前
LeetCode 热题100(七)【链表】(1)
数据结构·c++·算法·leetcode·链表
oliveira-time4 小时前
golang学习2
算法
面试鸭4 小时前
离谱!买个人信息买到网安公司头上???
java·开发语言·职场和发展
南宫生5 小时前
贪心算法习题其四【力扣】【算法学习day.21】
学习·算法·leetcode·链表·贪心算法
懒惰才能让科技进步5 小时前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝